# Anleitung XENAX® Xvi 75V8S

Original

# Ausgabe 3. Mai 2021 Kompakter Ethernet Servocontroller





#### Parametrierung über Webbrowser

Der integriert Webserver erlaubt eine Inbetriebnahme und Parametrierung über Web Browser. Nach einem automatischen Selbst-Check kann mit Klick auf den Quick Start Button die angeschlossene LINAX® Linearmotor-Achse, der ELAX® elektrische Schlitten oder die ROTAX® Drehmotor-Achse sofort in Bewegung gesetzt werden.

Dieser XENAX® Xvi 75V8S setzt neue Massstäbe in Sachen intuitive Bedienung.

#### Allgemein

Der XENAX® Xvi 75V8S Ethernet
Servocontroller dient zur Ansteuerung aller
Baureihen LINAX® Linearmotor-Achsen,
ELAX® elektrischen Schlitten sowie ROTAX®
Drehmotor-Achsen.
Gleichzeitig können auch die Servomotoren
Baureihen RAxx (Ultrakompakte
Drehachsen) und RT-xx (Rundtisch
Hohlwellenmotoren) angesteuert werden.

Auch marktübliche rotative AC/DC/EC Servomotoren z.B. von FAULHABER® oder MAXON® lassen sich mit einem XENAX® Xvi 75V8S betreiben.

Logikspeisung (24V DC) und Powerspeisung (24V – 75V DC) sind getrennt anschliessbar.

Damit ist "Safety Torque Off" standardmässig möglich.

Master-Slave Betrieb, Force Calibration (Kompensation der Rastkäfte bei eisenbehafteten Linearmotoren) und optionale Safety Funktionalitäten wie SS1, SS2 oder SLS sind weitere Features dieses kompakten XENAX® Xvi 75V8S Servocontrollers.

> Alois Jenny Jenny Science AG



# Inhaltsverzeichnis

| 1 Eigenschaften XENAX® Xvi 75V8S                                 | 7  |
|------------------------------------------------------------------|----|
| 1.1 Elektronik / Firmware                                        | 7  |
| 1.2 Leistung / Optionen                                          | 7  |
| 1.3 Abmessungen                                                  | 8  |
| 1.4 Xvi 75V8 versus Xvi 75V8S                                    | g  |
| 2 Ansteuerbare Motor-Typen                                       | 10 |
| 2.1 Linearmotor-Achsen                                           | 10 |
| 2.2 Servomotoren aus unserem Sortiment                           | 10 |
| 2.3 Servomotoren handelsüblich                                   | 11 |
| 3 Hardware und Aufbau                                            | 12 |
| 3.1 Umgebungsbedingungen                                         | 12 |
| 3.2 Montage und Installation                                     | 12 |
| 4 Functional Safety – TÜV zertifiziert                           | 13 |
| 4.1 Hardware-Anforderungen                                       | 13 |
| 4.2 Sicherheitsstandards                                         | 13 |
| 4.3 Rahmenbedingungen                                            | 14 |
| 4.4 Technische Daten Safety                                      | 15 |
| 4.5 Sicherheitsfunktionen                                        | 16 |
| 4.5.1 STO, Safe Torque Off                                       | 16 |
| 4.5.2 SS1, Safe Stop 1                                           | 16 |
| 4.5.3 SS2, Safe Stop 2                                           | 17 |
| 4.5.4 SLS, Safely Limited Speed                                  | 17 |
| 4.6 Functional Safety Parametrierung in WebMotion®               | 18 |
| 4.6.1 Anzeige der aktiven Safety Parameter                       | 18 |
| 4.6.2 Änderung der Safety Parameter                              | 18 |
| 5 UL                                                             | 20 |
| 5.1 UL-Ratings                                                   | 20 |
| 6 Elektrische Anschlüsse                                         | 21 |
| 6.1 Steckeranordnung                                             | 21 |
| 6.2 Stecker Pin-Belegung                                         | 21 |
| 6.2.1 USB/COM                                                    | 21 |
| 6.2.2 Motorstecker 3 Phasen                                      | 22 |
| 6.2.3 Logik und Power Speisung                                   | 22 |
| 6.2.4 Encoder und Hallsignale                                    | 23 |
| 6.2.5 Definition der Drehrichtung bei Servomotoren               | 23 |
| 6.2.6 OPTIO CAN, Pulse/Dir, zweiter Encoderkanal                 | 24 |
| 6.2.7 PLC I/O                                                    | 25 |
| 6.3 Interne Schaltung I/O                                        | 26 |
| 6.4 Output Konfiguration                                         | 27 |
| 7 Konfiguration Motor-Typ Jenny Science / Motor kundenspezifisch | 28 |

| 8  | JSB/COM Schnittstelle                                                           | 29 |
|----|---------------------------------------------------------------------------------|----|
|    | 8.1 Betrieb USB                                                                 | 29 |
|    | 8.2 Betrieb RS232                                                               | 29 |
| 9  | ETHERNET TCP/IP Schnittstelle                                                   | 30 |
|    | 9.1 Test IP Verbindung mit >IPCONFIG                                            | 31 |
|    | 9.2 Test Verbindung mit >PING                                                   | 31 |
|    | 9.3 Port der Socketverbindung schliessen                                        | 31 |
| 10 | ASCII Protokoli                                                                 | 32 |
|    | 10.1 ASCII Protokoll TCP/IP                                                     | 33 |
|    | 10.2 Asynchrone Mitteilungen (Events)                                           | 33 |
| 11 | WebMotion®                                                                      | 34 |
|    | 11.1 Start WebMotion®                                                           | 35 |
|    | 11.1.1 Fehler "Upload XENAX® Settings"                                          | 35 |
|    | 11.2 Quick Start (nur mit LINAX® und ELAX® Linearmotor Achsen)                  | 36 |
|    | 11.3 Operation, Status Line                                                     | 37 |
|    | 11.4 Move Axis by Click                                                         | 38 |
|    | 11.4.1 Move Axis by Click für LINAX® oder ELAX® Motoren                         | 38 |
|    | 11.4.2 Move Axis by Click für ROTAX® Drehmotor-Achse oder "Third Party" Motoren | 40 |
|    | 11.5 Move Axis by Command Line                                                  | 41 |
|    | 11.6 ASCII Befehlssatz für XENAX®                                               | 41 |
|    | 11.6.1 Power / Reset                                                            | 41 |
|    | 11.6.2 Basiseinstellungen                                                       | 42 |
|    | 11.6.3 Motoreinstellungen                                                       | 42 |
|    | 11.6.4 Reglereinstellungen                                                      | 42 |
|    | 11.6.5 Bewegungseinstellungen                                                   | 43 |
|    | 11.6.6 Referenzieren LINAX® / ELAX®                                             | 44 |
|    | 11.6.7 Referenzieren Gantry                                                     | 44 |
|    | 11.6.8 Referenzieren Rotativ                                                    | 44 |
|    | 11.6.9 Fahrbefehle                                                              | 45 |
|    | 11.6.10 Indexe (vorprogrammierte Fahrten)                                       | 45 |
|    | 11.6.11 Programm / Applikation                                                  | 46 |
|    | 11.6.12 Kraftsteuerung Forceteq® basic                                          | 46 |
|    | 11.6.13 Kraftsteuerung Forceteq® pro                                            | 48 |
|    | 11.6.14 Signateq®                                                               | 50 |
|    | 11.6.15 Events                                                                  | 50 |
|    | 11.6.16 Input / Output                                                          | 51 |
|    | 11.6.17 Korrekturtabelle                                                        | 52 |
|    | 11.6.18 Limit Position ELAX®                                                    | 53 |
|    | 11.6.19 Systeminformationen                                                     | 54 |
|    | 11.6.20 Ethernet                                                                | 55 |
|    | 11.6.21 Busmodul-Information                                                    | 55 |
|    | 11.6.22 CANopen                                                                 | 55 |
|    | 11.6.23 Fehlerausgabe                                                           | 56 |

| 11.6.24 Systemüberwachung                                                     | 56 |
|-------------------------------------------------------------------------------|----|
| 11.7 Move Axis by Forceteq®                                                   | 57 |
| 11.8 Move Axis Motion Diagram                                                 | 58 |
| 11.9 Index                                                                    | 60 |
| 11.10 Drive I_Force (Forceteq® basic)                                         | 61 |
| 11.11 Drive Force (Forceteq® pro)                                             | 61 |
| 11.12 Sector I_Force (Forceteq® basic)                                        | 62 |
| 11.13 Sector Force (Forceteq® pro)                                            | 62 |
| 11.14 Program                                                                 | 63 |
| 11.14.1 Befehlssatz Program                                                   | 64 |
| 11.15 I/O Functions                                                           | 67 |
| 11.15.1 Auswahl Input Funktionen                                              | 68 |
| 11.15.2 Auswahl Output Functions                                              | 70 |
| 11.15.3 Betrieb mit zusätzlicher Haltebremse                                  | 70 |
| 11.16 Profile (Geschwindigkeit)                                               | 71 |
| 11.17 Captured Pos                                                            | 72 |
| 11.18 State Controller                                                        | 73 |
| 11.18.1 F Setting                                                             | 76 |
| 11.19 Motor                                                                   | 79 |
| 11.19.1 Motoren LINAX® und ELAX®                                              | 79 |
| 11.19.2 Motor ROTAX®                                                          | 80 |
| 11.19.3 Third Party Motoren                                                   | 81 |
| 11.19.4 Überlauf der Position                                                 | 82 |
| 11.20 Referenzieren                                                           | 83 |
| 11.20.1 Referenz LINAX®                                                       | 83 |
| 11.20.2 Referenz ELAX®                                                        | 83 |
| 11.20.3 Referenz ROTAX® und Third Party Motoren                               | 85 |
| 11.20.4 Referenz auf mechanischen Anschlag                                    | 86 |
| 11.20.5 Korrekturtabelle für LINAX® / ELAX®                                   | 87 |
| 11.21 Basic Settings                                                          | 90 |
| 11.22 Force Sensor                                                            | 90 |
| 11.23 Version                                                                 | 91 |
| 11.24 Update Firmware                                                         | 92 |
| 11.25 Save                                                                    | 93 |
| 11.26 Open                                                                    | 93 |
| Master / Slave                                                                | 94 |
| 12.1 Master / Slave Gerätekonfiguration                                       | 94 |
| 12.2 Programmbeispiel Pick&Place                                              | 95 |
| 12.3 Timing Master / Slave                                                    | 95 |
| Gantry Synchronbetrieb                                                        | 96 |
| 13.1 Gantry Betrieb aktivieren  13.2 ASCII Befehlssatz Gantry Synchronhetrieh | 96 |
| IZ I NSI II MOTODICCATA IZARTKI SURCREANNATEIAN                               |    |

| 14 Forceteq® Kraftmesstechnologie                                | 98  |
|------------------------------------------------------------------|-----|
| 14.1 Forceteq® basic strombasiert mit selbst kalibriertem Motor  | 98  |
| 14.2 Forceteq® pro präzis mit Signateq® und externem Kraftsensor | 99  |
| 14.3 Forceteq® basic via Realtime Bus                            | 101 |
| 14.3.1 CANopen over Ethernet                                     | 101 |
| 14.3.2 Ethernet/IP                                               | 101 |
| 14.3.3 Profinet                                                  | 101 |
| 14.4 Forceteq® basic im XENAX®                                   | 102 |
| 14.4.1 I_Force Calibration                                       | 102 |
| 14.4.2 I_Force Limitation                                        | 102 |
| 14.4.3 I_Force Monitoring                                        | 103 |
| 14.4.4 I_Force Control                                           | 104 |
| 14.4.5 Sector Offset für Berührungsposition                      | 105 |
| 14.4.6 Applikationsbeispiel                                      | 106 |
| 14.5 Forceteq® pro via Realtime Bus                              | 110 |
| 14.5.1 CANopen over Ethernet                                     | 110 |
| 14.5.2 Ethernet/IP                                               | 110 |
| 14.5.3 Profinet                                                  | 110 |
| 14.6 Forceteq® pro im XENAX®                                     | 111 |
| 14.6.1 I_Force Calibration                                       | 111 |
| 14.6.2 Force Limitation                                          | 111 |
| 14.6.3 Force Monitoring                                          | 112 |
| 14.6.4 Force Control                                             | 113 |
| 14.6.5 Sector Offset für Berührungsposition                      | 114 |
| 15 Betriebszustand auf 7-Segment Anzeige                         | 114 |
| 16 Fehlerbehandlung                                              | 115 |
| 16.1 Fehlernummern                                               | 115 |
| 16.2 Bemerkungen zu Fehler 50                                    | 119 |
| 16.3 Bemerkungen zu Fehler 89                                    | 120 |
| 16.4 Bemerkungen zu Fehler 91                                    | 122 |
| 16.5 Willkürliche Anzeige auf 7-Segment                          | 123 |
| 16.5.1 Netzteil für Logikspeisung fehlerhaft                     | 123 |
| 16.5.2 Fehlerhafte Firmware                                      | 123 |
|                                                                  |     |



#### 1 Eigenschaften XENAX® Xvi 75V8S

#### 1.1 Elektronik / Firmware

Bezeichnung Daten

Schnittstellen Ethernet, TCP/IP, http Web Server

> Puls/Richtung, Master Encoder, I/O I<sup>2</sup>C Master/Slave, Start-up Key

USB (standard) oder RS232 (optional), CAN für

Signateq® Messverstärker

Bus, Multiachsbetrieb EtherCAT (CoE), DS402

Ethernet POWERLINK, DS402

CANopen, DS402 PROFINET (PROFIdrive) EtherNet/IP, DS402 Ethernet Switch, TCP/IP

Standard Servo (MODE 0) Betriebsarten

> Multiachsbetrieb (Master/Slave, Gantry) Elektronisches Getriebe (MODE 1) optional

Puls/Richtung (MODE 2) optional

Safety Motion Unit SMU Sicherheitsmodul, zweikanalige Überwachung

TÜV zertifiziert

SIL 2 Safety Integrity Level 2

Cat 3 Category 3

PL d Performance Level d

1733313 h MTTFd

Statusanzeige 7-Segment LED Input digital 12 x 24V Pull down

Output digital 8 x 24V, 100mA Source oder 400mA Sink

Input Funktion 8 Eingänge zum Start einer Funktion od. Programm

**Output Funktion** 8 Ausgänge zum Anzeigen eines Zustands Referenzierung für rotative Motoren Frei definierbar, inkl. externem Sensor

50 Fahrbewegungen (Beschl. / Geschw. / Weg, Position) Index

Profil 5 erweiterte Fahrprofile mit je 7 Profilsegmenten

Anzahl Applikationsprogramme via Input 15, Input 9-12 binär codiert (MODE >=10)

> Firmware Update Über TCP/IP, Flash-Speicher intern

Applikation und Parameter Update Über TCP/IP, Flash-Speicher intern

#### 1.2 Leistung / Optionen

"LG" Logikspeisung 24VDC / max. 1.3 A

"PW" Powerspeisung Motor 12-75VDC 3- Phasen Ausgangsfrequenz 0-599 Hz Nennstrom 0-8A

Spitzenstrom 18A

Dauerleistung / Verlustleistung Typisch 48V / 3A / 150W /  $\eta \approx 85\%$  / Pv = 22W

Temperaturüberwachung Endstufe Abschaltung bei 80°C

Überspannungs-Überwachung > 85V Unterspannungs-Überwachung < 10V Ballastschaltung bis 80W

Sicherung Power 10AF



Motortemperaturüberwachung bei LINAX®, ELAX® Abschaltung bei 80°C

und ROTAX®, Sensor in der Wicklung

PLC Input 8 Inputs, 24V

PLC Input BCD 4 Inputs, 24V, binär codiert zur Programmwahl

PLC Output 8 Outputs, 24V, Source 100mA, Sink 400mA, Source/Sink

Optionen

EtherCAT (CoE) DS402, Beckhoff®, OMRON®, TRIO® MC

POWERLINK (CoP) DS402, B&R®

CANopen DS402

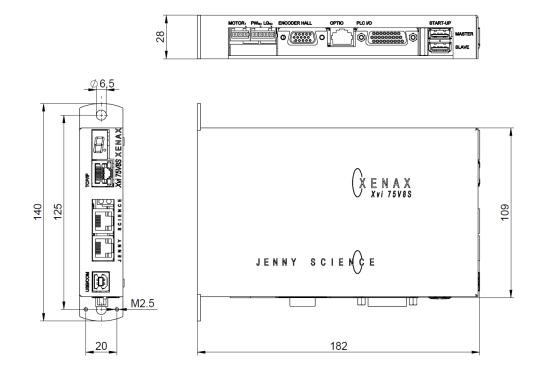
EtherNet/IP DS402, Allen-Bradley

PROFINET (PROFIdrive) SIMATIC, SIMOTION, SINUMERIK

SMU Safety Funktions STO Safe Torque Off

**SS1** Safe Stop 1 **SS2** Safe Stop 2

**SLS** Safely-Limited Speed


Start-up Key ID Nummer für Master Slave und Applikationsspeicher

Kraftfunktion Standardmässig freigegeben

Ansteuerbare Motortypen LINAX®, ELAX®, ROTAX® sowie Fremdmotoren

standardmässig freigegeben

#### 1.3 Abmessungen



| Schutzart   | IP 20                            |
|-------------|----------------------------------|
| Gewicht     | Standard 840g, mit Busmodul 880g |
| Deckel      | Chromstahl                       |
| Grundplatte | Chromstahl                       |



#### 1.4 Xvi 75V8 versus Xvi 75V8S

Der XENAX® Xvi 75V8S ist die Weiterentwicklung des aktuellen Modells XENAX® Xvi 75V8. Das neue Modell unterstützt all die bisherigen Funktionalitäten des Xvi 75V8, hat dieselben Abmessungen und kann daher 1:1 ersetzt werden. Für Neuentwicklungen empfehlen wir den Xvi 78V8S zu verwenden. Dieser kommt ohne JAVA aus und bietet darüber hinaus zusätzliche Möglichkeiten.

#### Neue Möglichkeiten Xvi 75V8S

|                                                                                                    | Xvi 75V8   | Xvi 75V8S                   |
|----------------------------------------------------------------------------------------------------|------------|-----------------------------|
| Webserverbasis für WebMotion®                                                                      | Java       | HTML5                       |
| Möglichkeit für Messverstärker Signateq® mit externem<br>Kraftsensor, präzise Kraftmessung         | -          | Ja                          |
| Positionsgenauigkeit absolut ROTAX® Rxhq                                                           | Standard   | Hoch (mit Korrekturtabelle) |
| Optimierte Endstufe für minimalen Platzbedarf (Abwärme),<br>Anordnung direkt nebeneinander möglich | -          | Ja                          |
| Umstellung bei Anschluss von Drittanbieter-Motoren                                                 | DIP-Switch | automatisch                 |
| Positionserfassung vorbereitet für Absolutwertgeber                                                | -          | Ja                          |
| USB-Schnittstelle                                                                                  | -          | Ja                          |
| RS-232-Schnittstelle                                                                               | Ja         | optional                    |
| Puls/Richtung                                                                                      | Ja         | optional                    |
| Elektronisches Getriebe                                                                            | Ja         | optional                    |
| Gehäuse                                                                                            | Aluminium  | Chromstahl                  |
| Gewicht                                                                                            | 515g       | 840g                        |
| Produkte-Code                                                                                      | 0x7508     | 0x7509                      |

#### **Hinweis:**

Beim Ersetzen eines Xvi 75V8 durch den Xvi 75V8S in einem bestehenden Bussystem muss beachtet werden, dass der Produkte-Code unterschiedlich ist. Die entsprechende Entwicklungsumgebung wird benötigt damit der neue Busteilnehmer korrekt eingebunden werden kann. Eine entsprechende Anweisung dafür, finden sie in der Anleitung des verwendeten Busmoduls auf unserer Website.

https://www.jennyscience.ch/de/produkte/download



#### 2 Ansteuerbare Motor-Typen

#### 2.1 Linearmotor-Achsen

#### LINAX® Linearmotoren

3 Phasen Synchron Linearmotor mit Encoder RS422 A/A\*, B/B\* und Z/Z\* und abstands-codierten Referenzmarken.

Speziell wird unterstützt: Linearmotoridentifikation und Temperaturabfrage über 1<sup>2</sup>C Bus.



# ELAX® Elektrischer Schlitten mit Linearmotor

ELAX® ist die Evolution der weitverbreiteten, pneumatischen Schlitten. Die grosse Errungenschaft ist die patentierte, kompakte Integration des Linearmotorantriebs in das Schlittengehäuse. Daraus resultiert ein bisher unerreichtes Kraft-/Volumenverhältnis.

> Speziell wird unterstützt: Linearmotoridentifikation und Temperaturabfrage über I<sup>2</sup>C Bus.



#### 2.2 Servomotoren aus unserem Sortiment

# ROTAX® Drehmotor-Achse mit Vakuum- / Druckluftdurchführung

ROTAX® wurde für schnelle und präzise Montageund Handlingsaufgaben entwickelt. Mit der Hohlwellendurchführung für Vakuum und Druckluft können Vakuumgreifer sowie einfach wirkende Pneumatikgreifer 360° endlos drehend betrieben werden. Der XENAX® Servocontroller identifiziert die ROTAX® Drehachse und konfiguriert die Controllerparameter automatisch.



#### Lafert, RAxx, RTxx

AC-Servomotoren mit Encoder A/A\*, B/B\* und Z/Z\* und Hall Sensoren z.B. AEG B28 D4 0,4Nm, 6000 U/min. Optional mit Bremse für Vertikal-Anwendungen.





#### 2.3 Servomotoren handelsüblich

#### Faulhaber®, Maxon®

AC / DC / EC bürstenlose Servomotoren mit inkremental Encoder RS422 A/A\*, B/B\* und Z/Z\* und Hall Sensoren, sowie DC bürstenbehaftete Servomotoren mit inkremental Encoder.

Bei den bürstenlosen AC/EC Servomotoren sind Hallsignale und Inkremental-Encoder notwendig.





#### 3 Hardware und Aufbau

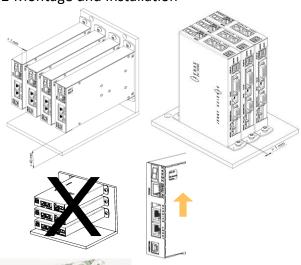
#### 3.1 Umgebungsbedingungen

| Lagerung und Transport   | Keine Lagerung im Freien. Die Lagerräume müssen gut<br>belüftet und trocken sein. Lagertemperatur von<br>-25°C bis +55°C |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Temperatur Einsatz       | 5°C -50°C Umgebung                                                                                                       |
|                          | (über 40°C, Nennstrom reduziert auf 6A)                                                                                  |
| Luftfeuchtigkeit Einsatz | 10-90% nicht kondensierend                                                                                               |
| Kühlung                  | Keine externe Kühlung notwendig, Kühlkörper                                                                              |
|                          | integriert                                                                                                               |
| MTBF                     | > 120'000h bei Gehäuse Innentemperatur von < 50°C                                                                        |

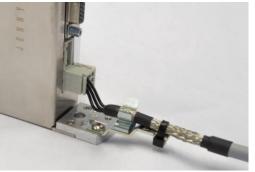
# 3.2 Montage und Installation

Montage durch 2 Schrauben an eine elektrisch leitende Rückwand, z.B. Schaltschrankrückwand.

Bei Reihenmontage können die Geräte direkt nebeneinander montiert werden. Ein Abstand von mehr als 1mm zwischen den Geräten, welcher für den Aus- und Einbau eines Gerätes vorteilhaft ist, ist nicht nötig.


Der Abstand zur Bodenplatte muss mindestens 40mm sein.

Für eine gute Kühlluft-Zirkulation empfehlen wir die Geräte immer vertikal zu montieren wobei die 7-Segment Anzeige oben sein sollte.


Bei engen Platzverhältnissen: Package mit 5 XENAX® Servocontroller montiert auf Grundplatte mit einem gemeinsamen Anschluss für die Speisung.

Beim Betrieb mit einer Powerspeisung Motor von grösser 60VDC muss der XENAX® Servocontroller in einem Schaltschrank montiert werden und der XENAX® Servocontroller muss mit Hilfe der Schirmklammer (Art. Nr. 130.09.00) das Motorkabel an die Schutzerde angeschlossen werden.

Beim Betrieb mit einer Powerspeisung Motor von kleiner oder gleich 60VDC muss für die Speisung entweder ein SELV/PELV Netzteil verwendet werden, oder der XENAX® Servocontroller muss mit Hilfe der Schirmklammer (Art. Nr. 130.09.00) das Motorkabel an die Schutzerde angeschlossen werden.









### 4 Functional Safety - TÜV zertifiziert

Konsultieren Sie auch das TUTORIAL Video
Tutorial 3: Functional Safety (SMU) TÜV certified
auf unserer Webseite. In diesem Video zeigen und
erklären wir die Funktionen der TÜV zertifizierten SMU
(Safety Motion Unit) für die funktionale Sicherheit.



#### 4.1 Hardware-Anforderungen

Für den Einsatz der TÜV zertifizierten Safety Funktionen wird ein XENAX® Servocontroller mit optionaler Safety Motion Unit (SMU) benötigt.

Das SMU Modul ist mit separater Artikelnummer bei Jenny Science zu bestellen.

Nachträgliche Aufrüstung von SMU Modulen auf bestehenden XENAX® Servocontroller ist nur bei Jenny Science vor Ort möglich. SMU Module werden ausschliesslich montiert in XENAX® Servocontroller ausgeliefert.

#### **Rechtlicher Hinweis:**

Bei Änderungen und Versuch von Änderungen an Hardware durch Dritte entfällt die TÜV Garantie und Jenny Science lehnt jegliche Haftung ab.



#### 4.2 Sicherheitsstandards

| EN 61508-1:2010 EN 61508-2:2010 EN 61508-3:2010 Functional safety of electrical/ electronic/programmable safety-related systems | SIL 2 Safety Integrity Level 2 |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| EN ISO 13849-1:2015                                                                                                             | Cat 3 Category 3               |
| Safety of machinery, Safety-related parts of control systems                                                                    | PL d Performance Level d       |
| EN 61800-5-2:2017                                                                                                               | Safety Functions:              |
| Adjustable speed electrical power drive systems                                                                                 | STO Safe Torque Off            |
|                                                                                                                                 | SS1 Safe Stop 1                |
|                                                                                                                                 | SS2 Safe Stop 2                |
|                                                                                                                                 | SLS Safely-Limited Speed       |



# 4.3 Rahmenbedingungen

| Motortypen     | Functional Safety mit SMU kann bei allen LINAX®, ELAX® und ROTAX® Motorfamilien, sowie rotative brushless Motoren mit differenziellen A/B/Z Encoder Signalen angewendet werden. Rotative bürstenbehaftete DC- Motoren sind von der Funktionalen Sicherheit ausgenommen.  Hinweis1: Bei vertikaler Montage der Linearmotoren muss für die Sicherheitsfunktionen SS2 und SLS zwingend eine Gewichtskompensation eingesetzt werden. Die Sicherheitsfunktion SBC (Safe Break Control) steht nicht zur Verfügung  Hinweis2: Rotative Motoren welche hängende Lasten betreiben sind von den Sicherheitsfunktionen SS2 und SLS ausgenommen. |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abnahmetest    | Die Konfigurationsprüfung ist durch den Kunden bei<br>jeder Änderung der Sicherheitsfunktionen und deren<br>Parameter durch einen Abnahmetest sicherzustellen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gebrauchsdauer | Die maximale Gebrauchsdauer bei Anwendung der<br>Functional Safety mit SMU beträgt 20 Jahre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dauerbetrieb   | Der XENAX® Servocontroller muss zwingend mindestens 1-mal im Jahr abgeschaltet werden.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Verkabelung    | Die Länge der einzelnen Anschlusskabel darf 30m pro<br>Anschlusskabel nicht überschreiten.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

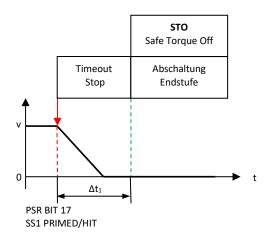


# 4.4 Technische Daten Safety

| Reaktionszeit der Sicherheitseingänge (bis zur Aktivierung einer Sicherheitsfunktion) | < 2ms                                                                                                                                                                |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wahrscheinlichkeit eines gefahrbringenden<br>Ausfalls pro Stunde (PFH)                | PFH = 51.7 * 10 <sup>-9</sup> 1/h                                                                                                                                    |
| Aktivierung einer Sicherheitsfunktion                                                 | Zweikanalig auf OV schalten. Einkanalig geschaltete Sicherheitseingänge führen zur Abschaltung der Endstufe und bedingen einen Neustart des XENAX® Servocontrollers. |
| Pegel der Sicherheitseingänge                                                         | >21.0V Sicherheitseingang inaktiv < 2.0VSicherheitseingang aktiv Spannungspegel ausserhalb dieser Bereiche sind unzulässig.                                          |
| Hierarchie der Sicherheitsfunktionen                                                  | Hierarchiestufe Sicherheitsfunktion                                                                                                                                  |
|                                                                                       | 4 STO Safe Torque Off                                                                                                                                                |
|                                                                                       | 3 SS1 Safe Stop 1                                                                                                                                                    |
|                                                                                       | 2 SS2 Safe Stop 2                                                                                                                                                    |
|                                                                                       | 1 SLS Safely Limited Speed                                                                                                                                           |
|                                                                                       | Sicherheitsfunktionen höherer Hierarchiestufen                                                                                                                       |
|                                                                                       | übersteuern die darunterliegenden.                                                                                                                                   |

| Verzögerungsrampen bei SS1  Profile Position Mode und Cyclic Synchronized Position Mode (RT-Ethernet) | Durch Parameter ED (Emergency Deceleration)                       |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Verzögerungsrampen bei SS2                                                                            |                                                                   |
| Profile Position Mode                                                                                 | Durch Parameter ED (Emergency Deceleration)                       |
| Cyclic Synchronized Position Mode (RT-Ethernet)                                                       | Vorgabe durch übergeordnete Steuerung                             |
| Verzögerungsrampen bei SLS                                                                            |                                                                   |
| Profile Position Mode                                                                                 | Nach Speed Verletzung durch Parameter ED (Emergency Deceleration) |
| Cyclic Synchronized Position Mode (RT-Ethernet)                                                       | Vorgabe durch übergeordnete Steuerung                             |

#### 4.5 Sicherheitsfunktionen

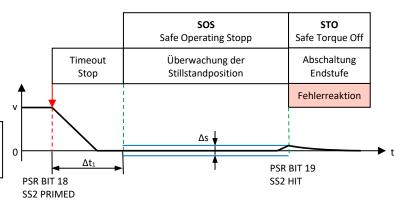

# 4.5.1 STO, Safe Torque Off

# Nach IEC 61800-5-2 Sofortige Abschaltung der Endstufe Fehler 90 wird generiert, wenn die Endstufe zum Zeitpunkt der STO eingeschaltet war. Parameter: keine PSR BIT 16 STO PRIMED/HIT

# 4.5.2 SS1, Safe Stop 1

Stoppen mit anschliessender Abschaltung der Endstufe, Achse ist frei beweglich (Stop Kategorie 1)

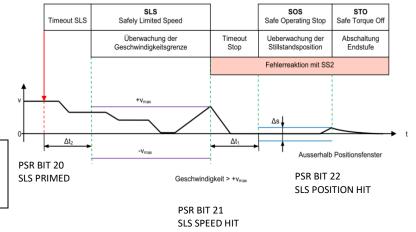
Fehler 90 wird generiert, wenn die Endstufe zum Zeitpunkt der SS1 eingeschaltet war.






#### 4.5.3 SS2, Safe Stop 2

Stoppen mit beibehalten der Stopp-Position, Achse bleibt unter Kraft, Endstufe aktiv. Danach Überwachung der Stillstands Position, Zustand SOS (Safe Operating Stop). Bei Überschreiten des Positions-fensters wird STO ausgelöst, Abschaltung der Endstufe (Stop Kategorie 2)


| Parameter                        |                |                     |
|----------------------------------|----------------|---------------------|
| Timeout Stop<br>Positionsfenster | $\Delta t_{1}$ | Standard 300ms      |
| Positionsfenster                 | Δs             | Standard +-2500 Inc |



#### 4.5.4 SLS, Safely Limited Speed

Überwachung einer sicheren Geschwindigkeit. Falls Safely Limited Speed überschritten, dann auf Safe Stop (SS2) mit Überwachung des Positionsfensters. Falls Positionsfenster auch überschritten, dann Auslösung von STO, Abschaltung der Endstufe. Geschwindigkeitsanpassung während SLS Timeout ist vom Anwender vorzunehmen.

| Parameter            |                  |              |                     |
|----------------------|------------------|--------------|---------------------|
| Timeout SLS          | $\Delta t_2 \\$  | Standar      | d 300ms             |
| Safely Limited Speed | $v_{\text{max}}$ | Standar      | d +-50'000 Inc/s    |
| Timeout Stop         |                  | $\Delta t_1$ | Standard 300ms      |
| Positionsfenster     |                  | Δs           | Standard +-2500 Inc |





# 4.6 Functional Safety Parametrierung in WebMotion®

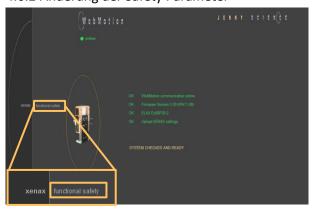
#### 4.6.1 Anzeige der aktiven Safety Parameter

Die definierten Safety Funktionen und Parameter werden in WebMotion® im Menu application/io angezeigt. Diese Safety Informationen sind nur zur Ansicht und können nicht verändert werden.

Die Parametrierung der Safety Funktion ist durch Tastendruck auf "Safety Param" ersichtlich.

Bitte beziehen Sie sich auf Kapitel 11 WebMotion® für mehr Informationen bezüglich WebMotion® Bedieneroberfläche.

Ist eine Safety Motion Unit (SMU) im XENAX® verbaut, aber keine Safety Parameter vergeben, erscheint die Meldung "SMU not active, no parameter set". Der Button führt direkt zur entsprechenden Eingabe Seite.




SWU not active, no parameter set

# 4.6.2 Änderung der Safety Parameter

Die Safety Parametrierung kann mit WebMotion® und dem Functional Safety Login geändert werden:

IP Adresse des XENAX® Servocontroller und "/SAFETY" in Webbrowser eingeben. Bsp. http://192.168.2.190/SAFETY.html



Password: SafetyXvi75V8S

"OK"

Achtung: Gross-/ Kleinschreibung beachten.



#### **Actual**

Aktuelle Safety Parameter des XENAX® Servocontrollers mit SMU

#### New

Änderungsmöglichkeit der Safety Parameter. Diese müssen zur Aktivierung im XENAX® Servocontroller gespeichert werden durch Tastendruck auf "save".

#### save

to XENAX®:

Die geänderten Safety Parameter werden zur Speicherung an XENAX® / SMU gesendet. Die aktiven Parameter sind in der Spalte ACTUAL ersichtlich.

to File:

Die aktuellen auf dem SMU geladenen Safety Parameter werden in ein PC-File gespeichert.

#### open

Safety Parameter werden von einem PC-File eingelesen. Diese müssen zur Aktivierung im XENAX® Servocontroller durch Tastendruck auf save → to XENAX gespeichert werden.

#### ED x 1000

Der Wert ED "Emergency Deceleration" muss gross genug gesetzt werden, damit das STOP und SLS Timeout eingehalten werden kann.

Beim Drücken auf EXIT gelangt man zurück ins WebMotion®.

**Hinweis:** Das Signal einer aktiven Sicherheitsfunktion hat über eine übergeordnete Steuerung zu erfolgen.



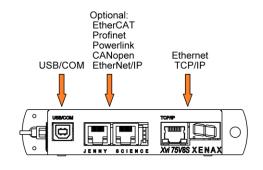
#### 5 UL

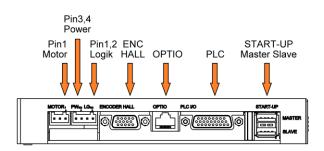
Bei UL-Konformität muss der XENAX® Servocontroller mit einem Brake Energy Converter von Jenny Science AG betrieben werden, um den Spannungspegel während des dynamischen Bremsens im DVC A-Levels zu gewährleisten.

Mehr Informationen im Dokument Manual\_Brake\_Energy\_Converter.pdf

# 5.1 UL-Ratings

| Beschreibung                                                                  | Daten                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eingang (PW)                                                                  | 24 – 36 VDC max. 6.93 A 15.59A peak                                                                                                                                                                                                    |
| Eingang (LG)                                                                  | 24 VDC max 1.3 A                                                                                                                                                                                                                       |
| Ausgang (Motor)                                                               | 0 – 25.5V ac, 3 Phase 5.7A 18A peak                                                                                                                                                                                                    |
| Energieversorgung                                                             | Diese Produkte sind für den Betrieb in Schaltungen<br>nicht direkt an das Versorgungsnetz anzuschliessen<br>(Galvanisch vom Netz trennen)<br>Die XENAX® Servocontroller/s müssen mit einem Brake                                       |
|                                                                               | Energy Converter verwendet werden, damit sie innerhalb der 36 DVC A Limits bleiben.                                                                                                                                                    |
|                                                                               | Der integrierte Halbleiter-Kurzschlussschutz bietet keinen Nebenstromkreisschutz. Abzweigschutz muss in Übereinstimmung mit dem National Electrical Code und etwaigen zusätzlichen lokalen Vorschriften zur Verfügung gestellt werden. |
|                                                                               | Für Kanada: Der integrierte Halbleiter-<br>Kurzschlussschutz bietet keinen<br>Nebenstromkreisschutz. Abzweigschutz muss in<br>Übereinstimmung mit dem Canadian Electrical Code,<br>Teil I, zur Verfügung gestellt werden.              |
|                                                                               | , 5 5 5                                                                                                                                                                                                                                |
| Maximale Umgebungslufttemperatur                                              | + 45°C                                                                                                                                                                                                                                 |
| Temperatur Wago-Steckverbinder                                                | -60 °C 100 °C                                                                                                                                                                                                                          |
| Temperaturbereich von extern angeschlossenen<br>Kabel und Leitungen           | -25 °C 80 °C                                                                                                                                                                                                                           |
| Motorüberlastschutz für andere Zwecke als die LINAX® / ELAX® / ROTAX® Motoren | Externe oder Fremdmotoren müssen mit einer Überlastschutzerkennung vorgesehen werden.                                                                                                                                                  |
| Motorüberlastschutz für die                                                   | Power Ausgang (Motor): 0-25.5 VAC, 3 Phase,                                                                                                                                                                                            |
| LINAX® / ELAX® / ROTAX® Motoren                                               | 5.7 A, 18 A Peak                                                                                                                                                                                                                       |
| UL File Nr.                                                                   | E477533, Link zum Dokument, Link zum Dokument für Kanada                                                                                                                                                                               |





#### 6 Elektrische Anschlüsse

#### **Hinweis:**

Alle elektrischen Anschlüsse dürfen nur bei getrennter Spannungsversorgung angeschlossen oder getrennt werden.

#### XENAX® Xvi 75V8S





#### 6.1 Steckeranordnung

#### BEZEICHUNG

#### **STECKERTYP**

USB/COM **USB-B Buchse** Realtime Ethernet (optional) 2 x RJ45 Buchse mit Status LED 9 Pol Buchse D-Sub CANopen (optional) Ethernet TCP/IP RJ45 Buchse mit Status LED **MOTOR** 3 Pol Stecker Wago, Raster 3,5mm POWER / LOGIK 4 Pol Stecker Wago, Raster 3,5mm **ENCODER HALL** 15 Pol Buchse D-Sub High Density OPTIO 8 Pol Buchse RJ45 26 Pol Buchse D-Sub High Density PLC I/O

#### 6.2 Stecker Pin-Belegung

2 x 4 Pol Stecker USB-A

#### 6.2.1 USB/COM

#### **USB-B Buchse**

START-UP / MASTER-SLAVE

Standardmässig ist hier ein Standard USB Anschluss implementiert. Optional kann über die USB-B Buchse eine Serielle RS232 Kommunikation mittels angepasster Bauteilbestückung realisiert werden (Auf Anfrage).

| <b>USB Buchse</b> | XENAX® | PC/SPS |
|-------------------|--------|--------|
| 1                 | N.C.   |        |
| 2                 | RX —   | — тх   |
| 3                 | TX —   | — RX   |
| 4                 | GND —  | - GND  |





#### 6.2.2 Motorstecker 3 Phasen

| Wago 3 Pol Stecker | LINAX® / ELAX® 3 Phasen | Servomotor<br>3 Phasen | DC Motor |
|--------------------|-------------------------|------------------------|----------|
| 1                  | U (weiss)               | U                      | DC +     |
| 2                  | V (braun)               | V                      | DC -     |
| 3                  | W (grün)                | W                      |          |

#### 6.2.3 Logik und Power Speisung

| Wago 4 Pol Stecker |           |                |
|--------------------|-----------|----------------|
| 1                  | 0, GND    | Notatoil Logik |
| 2                  | 24V DC    | Netzteil Logik |
| 3                  | 0, GND    | Netzteil Power |
| 4                  | 12-75V DC | Netzteil Power |

Typische POWER Speisung ist 24V DC. Bei den grösseren LINAX® F40 / F60 Achsen für grössere Massen (>2kg) oder hohe Geschwindigkeiten (>1.5m/s) 48V oder 72V DC. Der Strombedarf pro Achse kann bis 8A und 18A spitze pro Achse betragen.

Je nach bewegter Masse, Fahrprofil und Netzteilspannung.

Für eine Absicherung der Power-Speisung muss beachtet werden das für die Drehfeldausrichtung ein kurzzeitiger Spitzenstrom von 8A fliessen kann.

Für eine detaillierte Berechnung der benötigten Speisung in Ihrer Applikation, wenden sie sich bitte an unseren Support

https://www.jennyscience.ch/de/kontakt/support.

Wichtig: Der 0 Volt Anschluss der Logik Speisung (Pin1) und der 0V Anschluss der Power Speisung (Pin3) muss mit dem GND/Chassis Sternpunkt der Anlage/Schaltschrank verbunden sein

#### Hinweis:

Bei Emissions-Empfindlichkeiten, empfiehlt es sich das Speisespannungskabel von Logik und Power zu verdrillen.





# 6.2.4 Encoder und Hallsignale

| 15 Pol D-Sub Buchse | Signal            | Beschreibung                                                         |
|---------------------|-------------------|----------------------------------------------------------------------|
| 1                   | GND               | Gemeinsam, für Encoder und Hall OV Speisung, nur 1 Pin               |
| 2                   | 5V Encoder        | 150 mA für Encoder Speisung                                          |
| 3                   | Encoder A         | Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32                     |
| 4                   | Encoder A*        | Mittelpegel: Pull Up 2,7kΩ auf 5V, Pull Down 2,2kΩ,                  |
|                     |                   | Differentialeingang 26LS32, 330Ω intern zwischen Pin3/4              |
| 5                   | Encoder B         | Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32                     |
| 6                   | Encoder B*        | Mittelpegel: Pull Up 2,7kΩ auf 5V, Pull Down 2,2kΩ,                  |
|                     |                   | Differentialeingang 26LS32, 330 Ω intern zwischen Pin5/6             |
| 7                   | Encoder Z         | Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32                     |
| 8                   | Encoder Z*        | Mittelpegel: Pull Up 2,7k $\Omega$ auf 5V, Pull Down 2,2k $\Omega$ , |
|                     |                   | Differentialeingang 26LS32, 330 Ω E intern zwischen Pin7/8           |
| 9                   | HALL 1            | Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32                     |
| 10                  | HALL 1*           | Mittelpegel: Pull Up 2,7kΩ auf 5V, Pull Down 2,2kΩ,                  |
|                     |                   | Differentialeingang 26LS32                                           |
| 11                  | HALL 2 / -TMP     | Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32 /                   |
|                     |                   | Übertemperatur Signal Motor                                          |
| 12                  | HALL 2*           | Mittelpegel: Pull Up 2,7k $\Omega$ auf 5V, Pull Down 2,2k $\Omega$ , |
|                     |                   | Differentialeingang 26LS32                                           |
| 13                  | HALL 3 / I2C_SCL  | Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32 /                   |
|                     |                   | I2C Clock signal                                                     |
| 14                  | HALL 3*           | Mittelpegel: Pull Up 2,7k $\Omega$ auf 5V, Pull Down 2,2k $\Omega$ , |
|                     |                   | Differentialeingang 26LS32                                           |
| 15                  | 5V Hall / I2C_SDA | 5V, 150 mA / I2C Datensignal                                         |

# 6.2.5 Definition der Drehrichtung bei Servomotoren

|                                                                                            | Sicht auf Stirnfläche Motorwelle, drehen der Welle im<br>Uhrzeigersinn, der Zähler muss aufwärts zählen |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Encoder A/B tauschen<br>Motorstrom +/- tauschen                                            | Drehrichtung bei DC brush type Servomotor tauschen                                                      |
| Encoder A/B tauschen<br>Hall1 mit Hall3 tauschen<br>Wicklungs-Phase 1 und Phase 2 tauschen | Drehrichtung bei 3Phasen brushless Servomotoren tauschen                                                |
| Phase 1 auf Phase 2, 2 auf 3 und 3 auf 1<br>Hall 1 auf Hall2, 2 auf 3 und 3 auf 1          | Phasenanschlüsse bei brushless Servomotoren tauschen ohne Drehrichtungsänderung                         |



#### 6.2.6 OPTIO CAN, Pulse/Dir, zweiter Encoderkanal

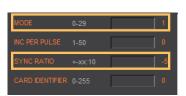
Standardmässig ist hier eine CAN Schnittstelle zur Kommunikation mit dem Signateq® Messverstärker implementiert. Optional kann diese Schnittstelle auch für die Funktion Pulse/Dir bzw. zweiter Encoderkanal verwendet werden.

#### **CAN** (standard)

zur Kommunikation mit dem Signateq® Messverstärker

| Signal              | RJ45  | OPTIO |
|---------------------|-------|-------|
| GND intern          | Pin 1 | GND   |
| 5V intern           | Pin 2 | 5V    |
| CAN High Line       | Pin 4 | CANH  |
| <b>CAN Low Line</b> | Pin 5 | CANL  |

#### Pulse/Dir (optional)


Eingabe im Menu Setup / basic settings: PULSE / DIRECTION CONTROL, MODE 2, Parameter MODE und INC PER PULSE



| Signal                                                               | RJ45  | OPTIO     |
|----------------------------------------------------------------------|-------|-----------|
|                                                                      |       |           |
| GND intern                                                           | Pin 1 | GND       |
| 5V intern                                                            | Pin 2 | 5V        |
| Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32                     | Pin 3 | PULS      |
| Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32                     | Pin 4 | RICHTUNG  |
| Mittelpegel: Pull Up 2,7k $\Omega$ auf 5V, Pull Down 2.2k $\Omega$ , | Pin 5 | RICHTUNG* |
| Differentialeingang 26LS32                                           |       |           |
| Mittelpegel: Pull Up 2,7k $\Omega$ auf 5V, Pull Down 2.2k $\Omega$ , | Pin 6 | PULS*     |
| Differentialeingang 26LS32                                           |       |           |

#### **Zweiter Encoderkanal (optional)**

ENCODER 2 elektronisches Getriebe, MODE 1, Parameter SYNCH RATIO 10 = 1:1



| Signal                                                               | RJ45  | OPTIO |
|----------------------------------------------------------------------|-------|-------|
|                                                                      |       |       |
| GND intern                                                           | Pin 1 | GND   |
| 5V intern                                                            | Pin 2 | 5V    |
| Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32                     | Pin 3 | Α     |
| Pull Up 2,7kΩ auf 5V, Differentialeingang 26LS32                     | Pin 4 | В     |
| Mittelpegel: Pull Up 2,7k $\Omega$ auf 5V, Pull Down 2.2k $\Omega$ , | Pin 5 | В*    |
| Differentialeingang 26LS32                                           |       |       |
| Mittelpegel: Pull Up 2,7k $\Omega$ auf 5V, Pull Down 2.2k $\Omega$ , | Pin 6 | A*    |
| Differentialeingang 26LS32                                           |       |       |



#### 6.2.7 PLC I/O

#### Output

| Signal                                                   | D-Sub | PLC Kabel | PLC I/O          |
|----------------------------------------------------------|-------|-----------|------------------|
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 1 | weiss     | Output 1 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 2 | braun     | Output 2 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 3 | grün      | Output 3 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 4 | gelb      | Output 4 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 5 | grau      | Output 5 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 6 | rosa      | Output 6 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 7 | blau      | Output 7 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 8 | rot       | Output 8 (0/24V) |

#### Input

| 24V Input, Ri 31k $\Omega$ | Pin 17 | weissgrau | Input 1                  |
|----------------------------|--------|-----------|--------------------------|
| 24V Input, Ri 31k $\Omega$ | Pin 18 | graubraun | Input 2                  |
| 24V Input, Ri 31k $\Omega$ | Pin 19 | weissrosa | Input 3                  |
| 24V Input, Ri 31k $\Omega$ | Pin 20 | rosabraun | Input 4                  |
| 24V Input, Ri 31k $\Omega$ | Pin 21 | weissblau | Input 5                  |
| 24V Input, Ri 31k $\Omega$ | Pin 22 | braunblau | Input 6                  |
| 24V Input, Ri 31k $\Omega$ | Pin 23 | weissrot  | Input 7                  |
| 24V Input, Ri 31k $\Omega$ | Pin 24 | braunrot  | Input 8 (Programm Start) |

24V Input, Ri  $31k\Omega$  / Bit 0 binär codiert 24V Input, Ri 31k $\Omega$  / Bit 1 binär codiert 24V Input, Ri 31k $\Omega$  / Bit 2 binär codiert 24V Input, Ri  $31k\Omega$  / Bit 3 binär codiert Pin 13 weissgrün Input 9 Pin 14 braungrün Input 10 Pin 15 weissgelb Input 11 Pin 16 gelbbraun Input 12

Bei MODE >=10 Input 9-12, binär codiert, für Programm Nummer 1-15, dabei ist Input 8 fix zugeordnet für Programm Start (flanken getriggert)



#### Freigabe Endstufe

Aktivierung der Funktionalität mit DIP-Schalter

OFF ON



HW Endstufen Freigabe mit 24V auf Pin 9 **DIP-Schalter OFF** Eingang offen oder OV = Endstufe

gesperrt

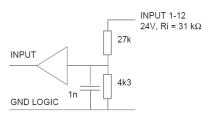
Pin 9 Enable PWR / Input schwarz

**DIP-Schalter ON** Endstufe immer freigegeben Pin 9 inaktiv (Standardkonfiguration)

| 2A                         | Pin 10 | violett  | GND                 |
|----------------------------|--------|----------|---------------------|
| 24V / 80mA                 | Pin 11 | graurosa | Pulse Output (Nicht |
|                            |        |          | implementiert)      |
| 00mA (total Pin 12+Pin 26) | Pin 12 | rotblau  | 24V Output          |

24V / 20

Pin 25 weissschwarz GND Pin 26 braunschwarz 24V Output


24V / 200mA (total Pin 12+Pin 26)



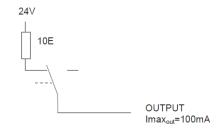
#### 6.3 Interne Schaltung I/O

#### **INPUT 1-12**





HIGH oder LOW ACTIVITY programmierbar

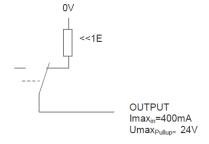

#### **OUTPUT 1-8**

#### **TYPE SOURCE**

| SOT      | TYPE   | SOA      | ACTIVITY |
|----------|--------|----------|----------|
| Bit-Wert |        | Bit-Wert |          |
| 0,1      | SOURCE | 1        | HIGH     |
|          |        | 0        | LOW      |

| Output | Output |
|--------|--------|
| ON     | OFF    |
| 24V*   | open*  |
| open   | 24V    |

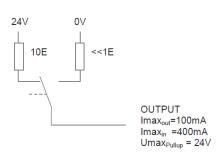
All Output SOURCE SOT 21845 SOA 255 / 0




#### **TYPE SINK**

| SOT      | TYPE | SOA      | ACTIVITY |
|----------|------|----------|----------|
| Bit-Wert |      | Bit-Wert |          |
| 0,0      | SINK | 1        | LOW      |
|          |      | 0        | HIGH     |

| Output | Output |
|--------|--------|
| ON     | OFF    |
| open   | 0V     |
| 0V     | open   |


All Output SINK SOT 0 SOA 255 / 0



#### TYPE SOURCE/SINK

| SOT<br>Bit-Wert | ТҮРЕ             | SOA<br>Bit-Wert | ACTIVITY | Output<br>ON | Output<br>OFF |
|-----------------|------------------|-----------------|----------|--------------|---------------|
| 1,0             | SINK /<br>SOURCE | 1               | HIGH     | 24V          | 0V            |
|                 |                  | 0               | LOW      | 0V           | 24V           |

All Output SOURCE/SINK SOT 43690 SOA 255 / 0





# 6.4 Output Konfiguration

# TYPE

SOT (Set Output Type) Parameter 16 Bit 2 Bit-Werte per Output



| Output   | 3   | 3    |    | 7  | $\epsilon$ | 5  | į | 5 | 4 | 4 | 3 | 3 | 2 | 2 |   | 1 |  |
|----------|-----|------|----|----|------------|----|---|---|---|---|---|---|---|---|---|---|--|
| SOT Bit  | 15  | 14   | 13 | 12 | 11         | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
| Bit-Wert | 0   | 1    | 0  | 1  | 0          | 1  | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |  |
| Dezimal  | 219 | 2/15 |    |    |            |    |   |   |   |   |   |   |   |   |   |   |  |

\*Default Einstellung alle Output auf SOURCE >SOT 21845

#### **ACTIVITY**

SOA (Set Output Activity) Parameter 8 Bit 1 Bit Wert per Output



| Output   | 8   | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
|----------|-----|---|---|---|---|---|---|---|
| SOA Bit  | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Bit-Wert | 1   | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Dezimal  | 255 |   |   |   |   |   |   |   |

\*Default Einstellung alle Output HIGH ACTIVE >SOA 255

#### **Parameter Werte**

| Output | SOT<br>Bit | SOT<br>Bit-Wert | ТҮРЕ        | SOA<br>Bit | SOA<br>Bit-Wert | ACTIVITY | Output<br>ON | Output<br>OFF |
|--------|------------|-----------------|-------------|------------|-----------------|----------|--------------|---------------|
| 1      | 0,1        | 0,0             | SINK        | 0          | 0               | HIGH     | 0V           | open          |
|        |            |                 |             | 0          | 1               | LOW      | open         | 0V            |
|        |            |                 |             |            |                 |          |              |               |
| 2      | 2,3        | 0,1             | SOURCE      | 1          | 0               | LOW      | open         | 24V           |
|        |            |                 |             | 1          | 1               | HIGH     | 24V*         | open*         |
|        |            |                 |             |            |                 |          |              |               |
| 3      | 4,5        | 1,0             | SINK/SOURCE | 2          | 0               | LOW      | 0V           | 24V           |
|        |            |                 |             | 2          | 1               | HIGH     | 24V          | 0V            |

#### Beispiel

| Output | SOT<br>Bit | SOT<br>Bit-Wert | TYPE        | SOA<br>Bit | SOA<br>Bit-Wert | ACTIVITY | Output<br>ON | Output<br>OFF |
|--------|------------|-----------------|-------------|------------|-----------------|----------|--------------|---------------|
| 1      | 0,1        | 0,0             | SINK        | 0          | 0               | HIGH     | 0V           | open          |
| 2      | 2,3        | 0,1             | SOURCE      | 1          | 1               | HIGH     | 24V*         | open*         |
| 3      | 4,5        | 0,1             | SOURCE      | 2          | 1               | HIGH     | 24V*         | open*         |
| 4      | 6,7        | 0,1             | SOURCE      | 3          | 1               | HIGH     | 24V*         | open*         |
| 5      | 8,9        | 1,0             | SINK/SOURCE | 4          | 0               | LOW      | 0V           | 24V           |
| 6      | 10,11      | 1,0             | SINK/SOURCE | 5          | 0               | LOW      | 0V           | 24V           |
| 7      | 12,13      | 1,0             | SINK/SOURCE | 6          | 1               | HIGH     | 24V          | 0V            |
| 8      | 14,15      | 0,0             | SINK        | 7          | 1               | LOW      | Open         | 0V            |

 SOA
 11001110b
 206d
 10836

 SOT
 0010101001010100b
 10836d
 00101
 1010
 0101
 0100
 Microsoft Windows Version 6.1 (Build 7601)



# 7 Konfiguration Motor-Typ Jenny Science / Motor kundenspezifisch

Im XENAX® Servocontroller wird unterschieden zwischen Jenny Science Motoren LINAX® Lx, ELAX® Ex od. ROTAX® Rx und Motoren anderer Hersteller. Der XENAX® Servocontroller erkennt automatisch, ob ein eigener Motor (LINAX® Lx, ELAX® Ex od. ROTAX® Rx) oder ein Motor eines anderen Herstellers (typischerweise rotativer Servomotor) angeschlossen ist und nimmt die entsprechenden Einstellungen vor. Ist diese automatische Erkennung nicht erwünscht, können die Einstellungen entweder auf Jenny Science Motor (Befehl: MM1) oder Fremdmotor (Befehl: MM2) fixiert werden. Standardmässig ist die AutoDetection (MM0) eingeschaltet.



#### 8 USB/COM Schnittstelle

#### 8.1 Betrieb USB

Über die USB/COM-Schnittstelle kann eine serielle Kommunikation mit dem XENAX® Servocontroller aufgebaut werden. Standardmässig wird diese über USB realisiert. Der XENAX® Servocontroller kann direkt über USB mit einem Computer verbunden werden wo er sich als «Serielles USB-Gerät» anmeldet. Damit kann eine serielle Kommunikation mit folgenden Einstellungen aufgebaut werden:

Baudrate 115'200 Baud
Data 8 Bit
Parity kein
Stop 1 Bit

#### 8.2 Betrieb RS232

Optional kann die serielle Kommunikation auch über RS232 aufgebaut werden. Der XENAX® Servocontroller muss dazu von Jenny Science entsprechend angepasst werden. Danach kann über die USB/COM-Schnittstelle die serielle Kommunikation aufgebaut werden. Dabei kann die RS232-Baudrate per DIP-Schalter gewählt werden.

Einstellung der Baudrate RS232 über 4-Bit DIP-Schalter (Deckel öffnen) Mit Aus-/Einschalten wird die neue Baudrate aktiviert.

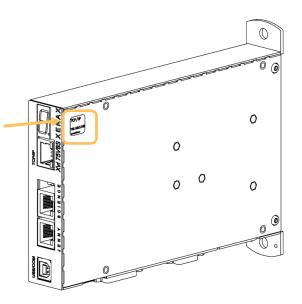


| Ва                   | audrate  | Bit 1 | Bit 2 | Bit 3 | Bit 4 |
|----------------------|----------|-------|-------|-------|-------|
|                      |          |       |       |       |       |
| RS232 96             | 00 Baud  | Х     | OFF   | OFF   | x     |
| RS232 115'200 Baud ( | Default) | X     | OFF   | ON    | Х     |
| RS 232 57'6          | 00 Baud  | X     | ON    | OFF   | Х     |
| RS232 19'2           | 00 Baud  | X     | ON    | ON    | X     |
|                      |          |       |       |       |       |
| Data                 | 8 Bit    |       |       |       |       |
| Parity               | kein     |       |       |       |       |
| Stop                 | 1 Bit    |       |       |       |       |

#### 9 ETHERNET TCP/IP Schnittstelle

Über die Ethernet TCP/IP Schnittstelle kann zum einen das HTML5-WebMotion zur Konfiguration des XENAX® Servocontrollers im Webbrowser geladen werden. Zum Ändern kann der XENAX® Servocontroller über eine Socketverbindung mit allen verfügbaren ASCII-Kommandos gesteuert werden. Für eine Socketverbindung muss der Port 10001 gewählt werden.

IP Adresse des XENAX® ist auf der Rückseite des Controllers aufgeführt. Wurde diese verändert oder ist das Label nicht zugänglich, können sie sich die IP Adresse auf der 7-Segmet-Anzeige ausgeben lassen.


Hierzu schalten sie die Logikspeisung ein, und während der Punkt auf der 7-Segment-Anzeige leuchtet, wieder aus. Beim nächsten einschalten wird die IP Adresse auf der 7-Segment-Anzeige ausgegeben.

Verbindung von XENAX® zu Laptop/PC über Switch mit normalem RJ45 Netzwerkkabel.

Bei Verbindung vom Laptop/PC direkt zu XENAX® allenfalls ein gekreuztes RJ45 Kabel verwenden. Bei neueren Netzwerkkarten ist ein gekreuztes Kabel nicht mehr notwendig.

#### Anzeige Ethernet Buchse

| Farbe  | LED links  | Farbe  | LED rechts  |
|--------|------------|--------|-------------|
| Off    | Keine      | Off    | Keine       |
|        | Verbindung |        | Aktivität   |
| Orange | 10Mbps     | Orange | Halb Duplex |
| Grün   | 100Mbps    | Grün   | Voll Duplex |







#### 9.1 Test IP Verbindung mit >IPCONFIG

#### Verbindungsspezifisches DNS-Suffix: IP-Adresse (Autokonfig.)...: 192.168.2.200 Subnetzmaske...: 255.255.255.0 Standardysteway

**IPCONFIG Eingabe DOS Fenster** 

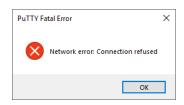
TCP/IP Adressbereich testen
IP Adresse im Bereich 192.168.2.xxx
Falls nötig IP Adresse manuell via
"Netzwerkumgebung" einstellen z.B. IP 192.168.2.200
xxx = 001 − 255

≠ Adresse XENAX®

#### 9.2 Test Verbindung mit >PING

PING Eingabe DOS Fenster

IP Adresse auf der Rückseite von XENAX® angegeben. Falls keine Antwort, Direktverbindung mit gekreuztem RJ45 Kabel testen.


```
C:\Dokumente und Einstellungen\ping 192.168.2.100

Ping wird ausgeführt für 192.168.2.100 mit 32 Bytes Daten:

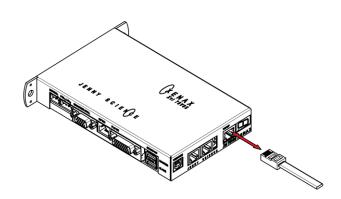
Antwort von 192.168.2.100: Bytes=32 Zeit<1ms ITL=64

Ping-Statistik für 192.168.2.100:
Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0 (0% Verlus
Ca. Zeitangaben in Millisek.:
Minimum = 0ms, Maximum = 0ms, Mittelwert = 0ms
```

#### 9.3 Port der Socketverbindung schliessen



Wenn der Port 10001 nicht richtig geschlossen wird, kann es vorkommen, dass dieser Port offen bleibt. In diesem Fall ist es nicht mehr möglich eine neue TCP/IP Verbindung auf den Port 10001 zu öffnen.


Es gibt 3 Möglichkeiten um den Port nachträglich korrekt zu schliessen.

Ethernet Kabel direkt beim XENAX® Servocontroller ein und ausstecken, dann wird Port 10001 automatisch freigegeben.

Eine zweite Socketverbindung auf dem Port 9999 öffnen und über diese Socketverbindung das Kommando «ENPR» senden. Dann wird Port 10001 wieder freigegeben.

Hinweis: Der Port 9999 kann nur für den Befehl «ENPR» verwendet werden.

Timeout setzen mit Kommando "WD" Nun muss eine Verbindung auf Port 10001 mindestens im mit «WD» eingestellten Intervall ein <CR> senden. Sonst wird die Verbindung automatisch getrennt.





#### 10 ASCII Protokoli

Über Ethernet TCP/IP wie im Menu move axis / by command line von WebMotion® oder über die serielle Schnittstelle z.B. mit dem Hyperterminal

Das einfache ASCII Protokoll arbeitet nach dem Echo Prinzip. Die gesendeten Zeichen kommen als Echo zurück und können sogleich geprüft werden. Dann kommen, falls vorhanden, Parameterwert und als Schlusszeichen das Prompt ">". Wird der Befehl nicht erkannt kommt in der Sequenz ein Fragezeichen "?". Die Abfrage eines Parameters erfolgt durch anfügen von "?" nach dem Befehl.

| Beschreibung    | Eingabe    | [Parameter]                 | Echo Befehl angenommen                                  |
|-----------------|------------|-----------------------------|---------------------------------------------------------|
| Parameter s     | chreiben:  |                             |                                                         |
| Power continues | PWC        | <cr></cr>                   | PWC <cr> <lf> &gt;</lf></cr>                            |
| Speed           | SP         | 10-9'000'000 <cr></cr>      | SPxxxxxx <cr> <lf> &gt;</lf></cr>                       |
| Acceleration    | AC         | 2'000-100'000'000 <cr></cr> | ACxxxxxx <cr> <lf> &gt;</lf></cr>                       |
| Parame          | ter lesen: |                             |                                                         |
| Tell Position   | TP         | <cr></cr>                   | TP <cr> <lf> XXXXXXXX<cr> <lf> &gt;</lf></cr></lf></cr> |
| Abfragen        | z.B. AC?   | <cr></cr>                   | AC? <cr> <lf> XXX <cr> <lf> &gt;</lf></cr></lf></cr>    |
|                 | SP?        | <cr></cr>                   | SP? <cr> <lf> XXX <cr> <lf> &gt;</lf></cr></lf></cr>    |

Echo Befehl nicht erkannt oder kann in der aktuellen Konfiguration nicht ausgeführt werden

<Befehl> <CR> <LF> ? <CR> <LF> >

#### #-Liste

| Nr. | Beschreibung                              |
|-----|-------------------------------------------|
| #01 | Error ist anstehend                       |
| #03 | Fahrt ist aktiv                           |
| #05 | Programm ist aktiv                        |
| #13 | Emergency Exit EE1 anstehend              |
| #14 | Emergency Exit EE anstehend               |
| #15 | Force Calibration aktiv                   |
| #27 | I Force Drift Compensation aktiv          |
| #34 | Rotative Referenz aktiv                   |
| #36 | Gantry Referenz aktiv                     |
| #38 | Referenz aktiv                            |
| #40 | Befehl an aktives Busmodul nicht erlaubt  |
| #47 | Fault Reaction aktiv                      |
| #49 | Kein JSC Motor angeschlossen              |
| #65 | Wertebereich des Parameters nicht gültig  |
| #66 | Kommando nicht korrekt abgeschlossen (>5s |
|     | zwischen zwei ASCII-Zeichen)              |

#### Hinweis sequentielle Befehlsvorgabe:

Ein Befehl nur mit <CR> abschliessen, kein <LF> dazu. Keinen neuen Befehl senden bevor das Prompt-Zeichen ">" empfangen worden ist.



#### 10.1 ASCII Protokoll TCP/IP

Bei TCP/IP können zusammenhängende ASCII Sequenzen in verschiedene Telegramm-Pakete aufgeteilt werden. Dazu ist ein separater Empfangsbuffer vorzusehen.

Detaillierte Informationen dazu im Dokument: "XENAX® Servocontroller/Allgemeine Dateien zu XENAX® Xvi/TCP\_IP\_KOMMUNIKATION" auf https://jennyscience.ch/de/produkte/download

#### 10.2 Asynchrone Mitteilungen (Events)

Zur Verkürzung der Reaktionszeiten können Statusänderungen oder Eingangsänderungen der PLC Schnittstelle automatisch gesendet werden (Events). Ein Polling mit permanenter Abfrage ist daher nicht notwendig.

#### **Events aktivieren**

Events ausgeschaltet, Standard EVT=0 Events allgemein aktiviert EVT=1

#### Statusänderungen / Reference Event

Werden gesendet bei allgemein aktivierten Events.

Power OFF @S0
Power ON / Halt @S1
In Fahrt @S2
Error @S9
Reference abgeschlossen @H

PLC Input

Eingänge selektieren durch ETI (Event Track Input)

Eingang 1..12 freigeben für Event ETI=1..C
Alle Eingangsevents aktivieren ETI=0

Event deaktivieren für Eingänge durch DTI (Disable Track Input)

Event für Eingang 1..12 ausschalten DTI=1..C Alle Eingangsevents ausschalten DTI=0

Aufbau der Input Eventmeldung @Ixyz Dabei sind xyz Halbbytes in Hexadezimaler Schreibweise.



| PLC I/O Pin Nr.                      | 16  | 15 | 14 | 13  | 24 | 23 | 22  | 21 | 20 | 19 | 18 | 17 |
|--------------------------------------|-----|----|----|-----|----|----|-----|----|----|----|----|----|
| INPUT Nr.                            | 12  | 11 | 10 | 9   | 8  | 7  | 6   | 5  | 4  | 3  | 2  | 1  |
| Beispiel Inputzustände nach Änderung | 1   | 0  | 1  | 1   | 0  | 0  | 1   | 0  | 1  | 1  | 0  | 1  |
| Event allgemein @I                   | Х   |    |    | У   |    |    | Z   |    |    |    |    |    |
| Beispiel Event @I                    | "B" |    |    | "2" |    |    | "D" |    |    |    |    |    |

#### Standardeinstellungen nach Power ON

Nach dem Einschalten des XENAX® Servocontrollers resp. nach Applikationsdownload sind die Standardeinstellungen wieder aktiv.

Events AUS EVT=0 PLC Input Events AUS DTI=0

#### 11 WebMotion®

WebMotion® ist eine in XENAX® integrierte grafische Bedieneroberfläche (Web-Site).

Diese wird über einen Web-Browser (Internet Explorer >= 8.0, Chrome, Firefox, Opera, ...) geladen und aktiviert.

#### **Hinweis:**

Zoom-Einstellung des Browsers sollte auf 100% gesetzt sein (Originalgrösse). Ansonsten wird der Bildschirmaufbau von WebMotion® beeinträchtigt.

Konsultieren Sie auch das TUTORIAL Video
Tutorial 1: Startup with web browser
auf unserer Webseite. Innerhalb von 5 Minuten sind Sie in
der Lage, jeder unserer Linearmotoren oder
Rotativachsen zu starten und über ihren Webbrowser zu
steuern.



#### 11.1 Start WebMotion®

Starten des Web-Browsers mit der IP Adresse Ihres XENAX® mit "/xenax.html" ergänzt

IP Adresse auf der Rückseite von XENAX® ersichtlich.

Beispiel:

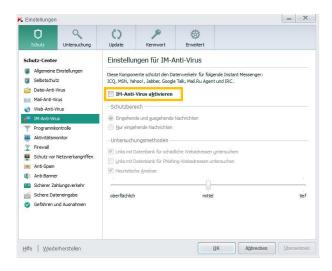
http://192.168.2.xxx/xenax.html

XENAX® meldet sich mit automatischem System
Check bestehend aus Typenbezeichnung und
Versionsangabe von Firmware und Hardware.
Ausserdem erfolgen eine Identifikation des
angeschlossenen Linearmotors oder Rotativen Motor
und eine Aktualisierung der geladenen XENAX®
Einstellungen (Parameter, Programme) auf
WebMotion®.



#### **Unterbruch TCP/IP Verbindung**

Falls die XENAX® Logikspeisung unterbrochen wird, oder das Ethernet Kabel abgesteckt wird, erkennt dies WebMotion® und signalisiert "offline". Die Ursache ist zu beheben und mit "Seite aktualisieren" im Browser wird die TCP/IP Verbindung neu aufgebaut


Bei Blockierung ist allenfalls der Browser zu verlassen und neu zu starten.




#### 11.1.1 Fehler "Upload XENAX® Settings"

Sollte sich die Fehlermeldung "Error Upload XENAX Settings" bei dem automatischen System Check von WebMotion® melden, kann die Einstellung in Kaspersky Internet Security dafür verantwortlich sein.

Verwenden Sie Kaspersky oder ein vergleichbares Antivirenprogramm, muss der Schutz für Instand Messenger-Dienste deaktiviert werden. (Siehe Beispiel Printscreen von Kaspersky Pure 3.0)



# 11.2 Quick Start (nur mit LINAX® und ELAX® Linearmotor Achsen)





WebMotion

Jissit till() t

On Financial para
ON Financial para
ON Parameter Street St

Die Quick Start Funktion erlaubt dem Anwender eine, nach dem Erhalt der Komponenten, sofortige und einfache Inbetriebnahme der LINAX® oder ELAX® Linearmotor Achsen. Dies erfolgt per Klick ohne Parametereinstellung und ohne Handbuch. Mit Drücken des Quick Start Knopfes wird ein Systemcheck durchlaufen mit folgenden Prüfungen: Verkabelung, Power Spannung, Inputfunktionen, Funktionalität des Messsystems, Einstellparameter und Stromflusses des Linearmotors.

Um das Messsystem prüfen zu können, werden Sie während des Systemchecks aufgefordert den Schlitten der Linearmotor-Achse über die gewünschte Bewegungsdistanz hin- und her zu fahren. Die Distanz sollte mindestens 20mm sein.

Mit dem "START" wird der Linearmotor, automatisch referenziert und über die vorher von Hand angegebene Distanz, in Bewegung gesetzt

Für die Quick Start Funktion wird empfohlen die LINAX® oder ELAX® Linearmotor-Achsen in horizontaler Ausrichtung und ohne Ladegewicht zu betreiben.

Die Dynamik lässt sich mit dem Schieberegler "DYNAMIC" beliebig anpassen.



### 11.3 Operation, Status Line

Die Status Line am unteren Rand von WebMotion® gibt jederzeit den Überblick über den Momentan-Zustand von XENAX® und des angeschlossenen Motors. Diese Angaben dienen zur Information für den Benutzer und können nicht verändert werden.

#### **MOTOR TMP**

Zeigt die momentane Temperatur in der Wicklung des LINAX® / ELAX® / ROTAX® Motors, welche mit einem Sensor gemessen wird. Diese Messfunktion ist bei rotativen Fremdmotoren nicht möglich. Dort erfolgt eine Temperaturüberwachung rein über eine I²T Berechnung.

Bei LINAX® / ELAX® / ROTAX® Motoren wird die I²T Überwachung zusätzlich zur gemessen Motortemperatur durchgeführt.

#### **POSITION**

Gibt nach Referenzierung die aktuelle absolute Position des Motors in Inkrement des Messsystems an. Standard bei LINAX®/ELAX® Linearmotor-Achsen ist 1Increment = 1µm.

#### **MOTOR**

Automatische Identifikation des angeschlossenen LINAX® / ELAX® / ROTAX® Motors. Ist ein rotativer Fremdmotor angeschlossen, wird "ROTATIVE" angezeigt.

#### REFERENCE

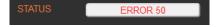
Die Referenzfahrt ist Bedingung zum Start der LINAX®/ELAX® Linearmotor Achsen. Daraus wird auch die präzise Stromkommutierung berechnet.

PENDING = Referenzfahrt ausstehend

DONE = Referenzfahrt erledigt

# MODE

Anzeige der Betriebsart
0=Standard Servo
1 = Elektronisches Getriebe über zweiten Encoder
2 = Pulse/Dir, Stepper Emulation
10 = Coded Prog Nr Standard
12 = Coded Prog Nr. für Stepper Controlled


#### **STATUS**

POWER OFF = ausgeschaltet
POWER ON / HALT = eingeschaltet, Motor im Stillstand
IN MOTION = Motor in Bewegung
ERROR XX = Fehlernummer, mit Button für genaueren
Fehlerbeschreib und Fehler Historie

#### **INPUT**

Zustand der Input 1-8 direkt und der Input 9-12 binär codiert







#### **OUTPUT**

Zustand der Output 1-8 (Veränderung über Menu application / I/O)

#### **PROG**

Programm-Nummer, binär codiert aus den Input 9-12 Für diese binärcodierte Programmanwahl ist der MODE auf grösser/gleich 10 zu stellen, dabei ist der Input 8 der Trigger für Programmstart.

#### 11.4 Move Axis by Click

# 11.4.1 Move Axis by Click für LINAX® oder ELAX® Motoren

Einfache online Steuerung für Inbetriebnahme und Test der Linear Motor Achse.

Die orangen Werte hinter den Feldern zeigen die momentan gespeicherten Werte im XENAX®. Neue Werte werden in den leeren Felder eigetragen und mit <Enter> übernommen. Diese Parameter werden direkt im XENAX® Servocontroller gespeichert und die alten Parameter überschrieben

#### **SOFT LIMIT POS**

Software Limit Position, Einstellung des gewünschten Fahrbereiches in Inc.

SLP- = Positionszähler untere Wert SLP+ = Positionszähler oberer Wert

Beide Werte auf 0 = kein Limit (Limiten entsprechen dem möglichen Fahrweg des angeschlossenen Linearmotors).

#### S-CURVE %

Prozentuale Verrundung des internen Fahrprofils zB. bei INDEX, generell über alle Fahrprofile. Automatische Berechnung des Ruckes (Beschleunigungsänderung pro Zeiteinheit Inc/s³)

#### ACC \*1'000

Beschleunigung in Inc/s<sup>2</sup> multipliziert mit Faktor 1'000

#### **SPEED**

Geschwindigkeit in Inc/s

#### **SP OVERRIDE %**

Übersteuerung der eingestellten Geschwindigkeit und Beschleunigung des Fahrprofils, beispielsweise für Prozessverlangsamung oder Einrichtbetrieb





#### Go Way (REL)

Eingabe des Weges relativ zur aktuellen Position in Inkrements. Start durch <Enter>.

#### Go Position (ABS)

Eingabe der Position absolut zum Nullpunkt in Inkrements. Start durch <Enter>.

#### **Rep Reverse**

Fahrweg automatisch hin- und hergefahren.
Eingabe des Fahrweges relativ zur aktuellen Position
in Inkrements. Start durch <Enter>.
Während der Fahrt können nun Beschleunigung,
Geschwindigkeit und Wartezeit online verstellt
werden. Mit "Stop Motion" kann die Fahrt gestoppt
werden.

#### **Wait Reverse**

Wartezeit an den Umkehrpunkten von Rep Reverse in 1ms Einheiten. Übernahme mit <Enter>.

#### TIME (ms)

Benötigte Zeit der zuletzt ausgeführten Fahrt in Millisekunden.

#### Reference

Referenzierung (>REF) Führt die Referenzfahrt durch um die Absolut-Position zu errechnen. Nach dem Einschalten einmal ausführen.

#### Go Pos 0

(>G0) Fahren auf Absolut-Position 0.

#### **Power Cont**

Power continues (>PWC)
Einschalten der Endstufe mit Übernahme der Absolut
Position ohne dass eine Referenzierung durchgeführt
wird. z.B. nach Fehler 50 oder nach Power Quit. Dies
ist möglich solange die Logikspeisung seit der letzten
Referenzierung nicht mehr unterbrochen wurde.

# **Stop Motion**

Stop mit Verzögerungsrampe gemäss Parameter ACC

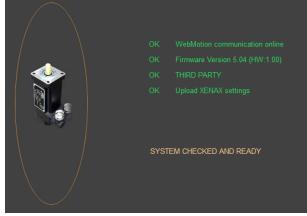
#### **Power Quit**

Endstufe stromlos, Achse lässt sich frei bewegen. Zum Fehler quittieren.





# 11.4.2 Move Axis by Click für ROTAX® Drehmotor-Achse oder "Third Party" Motoren


Der XENAX® Servocontroller erkennt den ROTAX®

Drehmotor automatisch



Erkennt der XENAX® Servocontroller weder eine LINAX® oder ELAX® Linearmotor-Achse noch eine ROTAX® Drehmotor-Achse, so geht der XENAX® davon aus, dass ein "Third Party" Servomotor angeschlossen ist.

Anstelle "Go Pos 0" werden Jog + und Jog - angeboten



#### Jog -

Drehen des Motors in negativer Richtung bis mit "Stop Motion" der Motor angehalten wird.

#### Jog +

Drehen des Motors in positiver Richtung bis mit "Stop Motion" der Motor angehalten wird.

Während der Motor mit Jog läuft, kann die Dynamik mit SP OVERRIDE oder SPEED angepasst werden.





# 11.5 Move Axis by Command Line

Der XENAX® kann direkt über den ASCII Befehlssatz angesteuert werden.

#### **COMMAND**

Ermöglicht das Senden des ASCII Kommandos mit <Enter>.

Unter "Recall commands" werden die eingegebenen Kommandos gespeichert und können per Mausklick wieder aktiviert werden

#### RESPONSE

Echo, Anzeige der empfangenen Zeichen durch WebMotion®

#### **COMMAND SET**

Liste aller ASCII Befehle, die von XENAX® erkannt werden.



#### 11.6 ASCII Befehlssatz für XENAX®

Über den einfachen ASCII-Zeichen Befehlssatz [+PARAMETER] lassen sich alle XENAX® Funktionen mit extrem kurzer Reaktionszeit ausführen.

Information zur den Tabellen:

<sup>1</sup>) Diagnose und Testfunktionen
? Abfrage des programmierten Wertes

# 11.6.1 Power / Reset

| BESCHREIBUNG                                                                                                                  | KÜRZEL                                     | BEF   | PARAMETER |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|-----------|
|                                                                                                                               |                                            |       |           |
| Power ON mit Encoder Zähler nullen                                                                                            | Power                                      | PW    |           |
| Power ON wieder einschalten, Zähler übernehmen                                                                                | Power continue                             | PWC   |           |
| Power OFF Servocontroller                                                                                                     | Power quit                                 | PQ    |           |
| Setzt Setup Parameter auf Default Werte                                                                                       | Reset                                      | RES   |           |
| Setzt Motor Parameter für den aktuell angeschlossenen Motor<br>auf Default Werte (restliche Parameter bleiben unverändert)    | Reset Motor                                | RESM  |           |
| Positionszähler Nullsetzen, (bei LINAX® / ELAX® nicht möglich, bei<br>ROTAX® nur möglich, wenn dieser nicht referenziert ist) | Clear position to 0                        | CLPO  |           |
| Deaktiviere Blockade aufgrund der unkonfigurierten SMU<br>(Bis zum nächsten Power-cycle)                                      | Disable Motion blocked by unconfigured SMU | DMBUS |           |



# 11.6.2 Basiseinstellungen

| BESCHREIBUNG                                                                                                                                                                                                      | KÜRZEL                  | BEF  | PARAMETER           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------------------|
| Einstellung des MODE (Betriebsart),<br>Wichtig! Soll nur bei POWER OFF umgestellt werden.                                                                                                                         | Mode                    | MD   | 0, 1, 2, 10, 12 / ? |
| Inc. pro Pulse, Puls/Richtungsansteuerung                                                                                                                                                                         | Inc per Pulse           | ICP  | 1-50                |
| Synchron Übersetzung für elektronisches Getriebe                                                                                                                                                                  | Synchronous Ratio       | SR   | ± 1-1'000 : 10      |
| CI setzen (abfragen), CANopen Node ID, Powerlink Node ID,<br>Remote ID in Master/Slave Konfiguration                                                                                                              | Card Identifier         | CI   | 0-99 / ?            |
| Card Identifier vom Gantry Slave                                                                                                                                                                                  | Gantry Slave Identifier | GSID | 1 - 4               |
| Identifikation max. 16 Zeichen frei für den Anwender                                                                                                                                                              | Servocontroller ident.  | SID  | Text / ?            |
| Automatische Erkennung vom Motor Manufacturer (Jenny<br>Science- oder Fremdmotor) oder Motor Manufacturer festlegen<br>MM0 = AutoDetection (Standardeinstellung)<br>MM1 = Jenny Science Motor<br>MM2 = Fremdmotor | Motor Manufacturer      | ММ   | 0-2/?               |

# 11.6.3 Motoreinstellungen

| BESCHREIBUNG                                                                                                                                                                                                                                                                                                                        | KÜRZEL                    | BEF   | PARAMETER         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|-------------------|
|                                                                                                                                                                                                                                                                                                                                     |                           |       |                   |
| Maximaler Motorstrom nominal [x10mA]                                                                                                                                                                                                                                                                                                | l stop                    | IS    | 10-1'800 / ?      |
| Maximaler Motorstrom Spitze[x10mA]                                                                                                                                                                                                                                                                                                  | l run                     | IR    | 10-1'800 / ?      |
| Polpaarzahl des Motors                                                                                                                                                                                                                                                                                                              | Polepair                  | POL   | 1-100 / ?         |
| Anzahl Encoder Inkrements für eine Umdrehung                                                                                                                                                                                                                                                                                        | Encoder                   | ENC   | 10-32'000 / ?     |
| Reihenfolge der Phasenansteuerung (u,v,w oder v,u,w)                                                                                                                                                                                                                                                                                | Phase Direction           | PHD   | 0,1/?             |
| Reihenfolge der Phasensteuerung erkennen.  Durch Drehen des Motors im Uhrzeigersinn, wird 0 oder 1  ausgegeben. Parameterwert kann direkt für die Eingabe der Phasensteuerung verwendet  werden (PHD).  Erscheint "?" ist der DIP-Schalter im XENAX® Servocontroller auf Linear eingestellt oder die Hall Verkabelung stimmt nicht. | Phase Direction Detection | PHDD  | 0, 1, ?           |
| Offset des elektrischen Winkels nach der Neu-ausrichtung der<br>Spulen zu den Magneten.                                                                                                                                                                                                                                             | Phase Offset              | PHO   | 0-359 / ?         |
| Kraftkonstante des Motors bei LINAX®/ELAX® in [mN/A], Drehmomentkonstante bei rotativen Motoren in [ $\mu$ Nm/A]                                                                                                                                                                                                                    | Force Constant Motor      | FCM   | 0-100'000'000 / ? |
| Widerstand Phase zu Phase des Motors in $[m\Omega]$                                                                                                                                                                                                                                                                                 | Phase to Phase Resistance | RPH   | 0-100'000 / ?     |
| Induktivität Phase zu Phase des Motors in [μH]                                                                                                                                                                                                                                                                                      | Phase to Phase Inductance | LPH   | 0-100'000 / ?     |
| Übersetzungsverhältnis von rotativen Jenny Science Motoren<br>(ROTAX)                                                                                                                                                                                                                                                               | Gear Ratio                | GR    | ?                 |
|                                                                                                                                                                                                                                                                                                                                     | 11.6.4 Reglereinstellu    | ingen |                   |

| BESCHREIBUNG                                                                          | KÜRZEL             | BEF | PARAMETER         |
|---------------------------------------------------------------------------------------|--------------------|-----|-------------------|
| Gewicht/Last "PAYLOAD" [g] oder<br>Trägheitsmoment "INERTIA" [x10 <sup>-9</sup> kgm²] | Mass Load          | ML  | 0-100'000'000 / ? |
| Bandbreite Positionsregler "GAIN POS"                                                 | Bandwidth Position | BWP | 1-5'000 / ?       |



| Bandbreite Stromregler "GAIN CUR"                                                      | Bandwidth Current                   | BWC  | 5-5'000 / ?       |
|----------------------------------------------------------------------------------------|-------------------------------------|------|-------------------|
| Frequenz des Notch-Stromfilters "Avoid Vibration FREQ NOTCH"                           | Filter Frequency Current            | FFC  | 0-, 160-2'000 / ? |
| Güte des Notch-Stromfilters                                                            | Filter Quality Current              | FQC  | 500-100'000 / ?   |
| Frequenz des Aktiv-Stromfilters "Avoid Vibration FREQ ACTIVE"                          | Avoid Vibration Frequency           | AVF  | 0-, 200-2'000 / ? |
| Dämpfungskoeffizient in % des Aktiv-Stromfilters                                       | Avoid Vibration Damping             | AVD  | 1-50 / ?          |
| Maximale Positionsabweichung in Inkrement "Deviation POS ACT"                          | <b>Deviation Position</b>           | DP   | 1-1'000'000 / ?   |
| Zulässige Positionsabweichung im Zielpunkt "Deviation TARGET"                          | Deviation Target Pos.               | DTP  | 1-10'000 / ?      |
| Frequenz des Speed Filters                                                             | Filter Frequency Speed              | FFS  | 0-, 160-2'000 / ? |
| Güte des Speed Filters                                                                 | Filter Quality Speed                | FQS  | 500-100'000 / ?   |
| Reglereigenschaften auf Verhalten kleiner oder gleich Firmware<br>V4.04D zurücksetzten | Enhanced Bandwidth<br>Mode Disable  | EBMD | 0-1 / ?           |
| Einstellung der Reglerstabilität "STAB – DYN"                                          | Pole Placement<br>Stability Dynamic | PPSD | ±50/?             |
| Einstellung des Dämpfungskoeffizients in % für die Reduktion der Ausschwingzeit        | Swing Out Reduction<br>Damping      | SORD | 0-50 / ?          |
| Einstellung der Frequenz in 0.1Hz (21 => 2.1Hz) für die Reduktion der Ausschwingzeit   | Swing Out Reduction<br>Frequency    | SORF | 0-, 20-1000 / ?   |

# 11.6.5 Bewegungseinstellungen

| BESCHREIBUNG                                                                                                                                                                                                                                                                                  | KÜRZEL                                   | BEF               | PARAMETER                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|-----------------------------------------------------|
| Position soll (absolut) Inkrement                                                                                                                                                                                                                                                             | Position                                 | РО                | ± 2'000'000'000 / ?                                 |
| Position soll (absolut) Inkrement, Initialwert nach Powerup                                                                                                                                                                                                                                   | Position Initial Value                   | POI               | ± 2'000'000'000 / ?                                 |
| Weg (relativ) Encoder Inkrement                                                                                                                                                                                                                                                               | Way                                      | WA                | ± 2'000'000'000 / ?                                 |
| Weg (relativ) Encoder Inkrement, Initialwert nach Powerup                                                                                                                                                                                                                                     | Way Initial Value                        | WAI               | ± 2'000'000'000 / ?                                 |
| Geschwindigkeit Inc/s (Encoder Zähler)                                                                                                                                                                                                                                                        | Speed                                    | SP                | 10-9'000'000 / ?                                    |
| Geschwindigkeit Inc/s (Encoder Zähler) , Initialwert nach Powerup                                                                                                                                                                                                                             | Speed Initial Value                      | SPI               | 10-9'000'000 / ?                                    |
| Beschleunigung Inc/s² (Encoder Zähler)                                                                                                                                                                                                                                                        | Acceleration                             | AC                | 2'000-1'000'000'000 / ?                             |
| Beschleunigung Inc/s² (Encoder Zähler), Initialwert nach Powerup                                                                                                                                                                                                                              | Acceleration Initial Value               | ACI               | 2'000-1'000'000'000 / ?                             |
| Notfall-Verzögerung Inc/ s² (z.B. bei Input Funktion EE/EE1, bei Fehlern, bei Fahren in Limit Switch oder Soft Limite usw.) Im Betrieb wird die Notfallverzögerung nötigenfalls angepasst, falls sich eine Verzögerungszeigt von >1s ergeben würde Verzögerungszeit ist im Notfall immer <1s. | Emergency<br>Deceleration                | ED                | 10'000-1'000'000'000 / ?                            |
| Überschreiben/Skalierung von Geschwindigkeit und<br>Beschleunigung                                                                                                                                                                                                                            | Override                                 | OVRD              | 1-100 / ?                                           |
| Überschreiben/Skalierung von Geschwindigkeit und<br>Beschleunigung, Initialwert nach Powerup                                                                                                                                                                                                  | Override Initial Value                   | OVRDI             | 1-100 / ?                                           |
| Prozentuale Verrundung der Trajektorie. Automatische<br>Berechnung des Ruck-Parameters                                                                                                                                                                                                        | S-Curve                                  | SCRV              | 1-100 / ?                                           |
| Prozentuale Verrundung der Trajektorie. Automatische<br>Berechnung des Ruck-Parameters, Initialwert nach Powerup                                                                                                                                                                              | S-Curve Initial Value                    | SCRVI             | 1-100 / ?                                           |
| Beschleunigungsänderung [x1000Inc/s³] (Ruck)                                                                                                                                                                                                                                                  | Acceleration Variation (Jerk), Read only | ACV               | /?                                                  |
| Begrenzung Fahrbereich innerhalb Soft Limite Links<br>Nur aktiviert bei LINAX®/ELAX® Motoren                                                                                                                                                                                                  | Soft Limit Position<br>Negaitve          | SLPN<br>(alt: LL) | 0 - <hublänge<br>LINAX®/ELAX®&gt; / ?</hublänge<br> |
| Begrenzung Fahrbereich innerhalb Soft Limite Rechts<br>Nur aktiviert bei LINAX®/ELAX® Motoren                                                                                                                                                                                                 | Limit Right                              | SLPP<br>(alt:LR)  | 0 - <hublänge<br>LINAX®/ELAX®&gt; / ?</hublänge<br> |



# 11.6.6 Referenzieren LINAX® / ELAX®

| BESCHREIBUNG                                                                                                                                                                                                                              | KÜRZEL        | BEF  | PARAMETER |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|-----------|
| Home des Linearmotor-Encoders                                                                                                                                                                                                             | Referenz      | REF  |           |
| Startrichtung REF  0 = REF positiv, 1 = REF negativ  2 = Gantry REF positiv, Motoren gleichsinnig  3 = Gantry REF negativ, Motoren gleichsinnig  4 = Gantry REF positiv, Motoren gegensinnig  5 = Gantry REF negativ, Motoren gegensinnig | Direction REF | DRHR | 0-5 / ?   |

# 11.6.7 Referenzieren Gantry

| BESCHREIBUNG                                                                                                                                                                                                                                                                                                                   | KÜRZEL                                     | BEF        | PARAMETER         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|-------------------|
| Card Identifier vom Gantry Slave im Master eintragen<br>CI setzen (abfragen), CANopen Node ID, Powerlink Node ID,                                                                                                                                                                                                              | Gantry Slave Identifier<br>Card Identifier | GSID<br>CI | 0 – 4<br>0-99 / ? |
| Remote ID in Master/Slave Konfiguration<br>Home des Linearmotor-Encoders                                                                                                                                                                                                                                                       | Referenzierung                             | REF        |                   |
| Startrichtung REF  0 = REF positiv, 1 = REF negativ  2 = Gantry REF positiv, Motoren gleichsinnig  3 = Gantry REF negativ, Motoren gleichsinnig  4 = Gantry REF positiv, Motoren gegensinnig  5 = Gantry REF negativ, Motoren gegensinnig                                                                                      | Direction REF                              | DRHR       | 0-5/?             |
| Gibt den automatisch ermittelten Gantry Master Slave Offset<br>zurück. Wichtig: Der Befehl <b>DGMSO</b> ist auf der Gantry Slave<br>Achse auszuführen!                                                                                                                                                                         | Detected Gantry Master<br>Slave Offset     | DGMSO      |                   |
| Vorgabe des Gantry Master Slave Offset. Abweichung zum automatisch ermittelten Wert max. 0.5mm, sonst Fehler 76.  0 = Automatisch ermittelter Wert anwenden, kann mit DGMSO gelesen werden <> 0 = Vorgegebener Gantry Master Slave Offset anwenden Wichtig: Der Befehl <b>DGMSO</b> ist auf der Gantry Slave Achse auszuführen | Preset Gantry Master<br>Slave Offset       | PGMSO      | +- 5'000'000 / ?  |

# 11.6.8 Referenzieren Rotativ

| BESCHREIBUNG                                                                                                | KÜRZEL     | BEF | PARAMETER      |
|-------------------------------------------------------------------------------------------------------------|------------|-----|----------------|
| Referenzierung gemäss Programmierung                                                                        | Referenz   | REF |                |
| Drehrichtung zum Suchen des<br>Grobnulls 1 = CW, 2 = CCW                                                    | Dir Home   | DRH | 1-2            |
| Geschwindigkeit zum Suchen des externen<br>Sensors. Falls kein externer Sensor<br>vorhanden, SPH = 0 setzen | Speed Home | SPH | 0-25'000 Inc/s |
| Home Sensor (extern) Input Nummer<br>0 = None, 1-8 = Input Nummern                                          | Input Home | INH | 0-8            |



| Drehrichtung zum Suchen der Z-Marke auf dem Encoder $1 = CW$ , $2 = CCW$ , $3 = k$ ürzester Weg (nur bei ROTAX® Rxvp möglich)                                                                                                                                                                     | Dir Z-Mark            | DRZ  | 1-3/?              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|--------------------|
| Geschwindigkeit zum Suchen der Z-Marke<br>Falls keine Z-Marke im Encoder, SPZ = 0 setzen (nur bei<br>Fremdmotoren möglich, nicht bei ROTAX)                                                                                                                                                       | Speed Z-Marke         | SPZ  | 0, 10-10'000 Inc/s |
| Position der Z-Marke bezogen zum internen Home-Sensor des ROTAX® Rxvp. Wird nach der erstmaligen Referenzfahrt im ROTAX® Rxvp gespeichert und bleibt von da an unverändert. Mit RXZPO kann der Wert gelöscht werden und der ROTAX® Rxvp somit wieder in den Auslieferungszustand gebracht werden. | Rotax Z-Mark Position | RXZP | 0/?                |

# 11.6.9 Fahrbefehle

| BESCHREIBUNG                                             | KÜRZEL                    | BEF   | PARAMETER            |
|----------------------------------------------------------|---------------------------|-------|----------------------|
|                                                          |                           |       |                      |
| Fahre direkt auf Position soll (absolut) Inkrement       | Go direct Position        | G     | ± 2'000'000'000      |
| Fahre auf Position soll (absolut)                        | Go Position               | GP    | (Position = PO Wert) |
| Fahre Weg (relativ)                                      | Go Way                    | GW    | (Weg = WA Wert)      |
| Fahre auf Z-Marke der Encoderscheibe                     | Go Z-Mark                 | GZ    |                      |
| Fahre positiv, v = konstant                              | Jog Positive              | JP    | (Speed = SP Wert)    |
| Fahre negativ, v = konstant                              | Jog Negative              | JN    | (Speed = SP Wert)    |
| Wiederhole Weg positiv/negativ                           | Repeat Reverse            | RR¹)  | 1-100'000            |
| Wiederhole Weg gleiche Drehrichtung                      | Repeat Way                | RW¹)  | 1-100'000            |
| Wartezeit bei Befehl RR und RW                           | Wait Repeat               | WT¹)  | 1-10'000 (ms)        |
| Wartezeit bei Befehl RR und RW, Initialwert nach Powerup | Wait Repeat Initial Value | WTI¹) | 1-10'000 (ms)        |
| Index Nr. abfahren                                       | Index                     | IX    | 1-50                 |
| Profil Nr. xx starten                                    | Profil                    | PRF   | 1-5                  |
| DRIVE I_FORCE Nr. xx fahren                              | Drive I Force             | DIF   | xx                   |
| DRIVE FORCE Nr. xx fahren (verfügbar mit Forceteq® pro)  | Drive Force               | DF    | xx                   |
| Programm & Bewegung stoppen kontrolliert                 | Stop Motion               | SM    |                      |

# 11.6.10 Indexe (vorprogrammierte Fahrten)

| BESCHREIBUNG                                                                                                                                             | KÜRZEL               | BEF  | PARAMETER                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|----------------------------------------|
| Index Nr. abfahren                                                                                                                                       | Index                | IX   | 1-50                                   |
| Nummer Index vorladen für Änderung der Indexparameter mit<br>remote control                                                                              | Nummer Index         | NIX  | 1-50                                   |
| Acceleration speichern in Index bei der mit NIX vorgeladenen<br>Nummer (permanent gespeichert, auch nach power cycle)                                    | Accel. Index         | AIX  | 2-1'000'000 (x1000) Inc/s <sup>2</sup> |
| Acceleration speichern in Index bei der mit NIX vorgeladenen<br>Nummer (nicht permanent gespeichert, sondern nur gültig bis<br>zum nächsten power cycle) | Accel. Index Dynamic | AIXD | 2-1'000'000 (x1000) Inc/s²             |
| Speed speichern in Index bei der mit NIX vorgeladenen Nummer (permanent gespeichert, auch nach power cycle)                                              | Speed Index          | SIX  | 10-1'000'000 Inc/s                     |
| Speed speichern in Index bei der mit NIX vorgeladenen Nummer (nicht permanent gespeichert, sondern nur gültig bis zum nächsten power cycle)              | Speed Index Dynamic  | SIXD | 10-1'000'000 Inc/s                     |



| Distanzen speichern in Index bei der mit NIX vorgeladenen Nummer (permanent gespeichert, auch nach power cycle)                                                                            | Distance Index         | DIX   | ± 2'000'000'000 Inkrement |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|---------------------------|
| Distanzen speichern in Index bei der mit NIX vorgeladenen<br>Nummer (nicht permanent gespeichert, sondern nur gültig bis<br>zum nächsten power cycle)                                      | Distance Index Dynamic | DIXD  | ± 2'000'000'000 Inkrement |
| Index Typ speichern in Index bei der mit NIX vorgeladenen<br>Nummer Nummer (1 = absolut, 2 = relativ)<br>(permanent gespeichert, auch nach power cycle)                                    | Type of Index          | TYIX  | 1,2 / ?                   |
| Index Typ speichern in Index bei der mit NIX vorgeladenen<br>Nummer Nummer (1 = absolut, 2 = relativ)<br>(nicht permanent gespeichert, sondern nur gültig bis zum<br>nächsten power cycle) | Type of Index Dynamic  | TYIXD | 1,2 / ?                   |

# 11.6.11 Programm / Applikation

| BESCHREIBUNG                                                                                                                                                                                                                                      | KÜRZEL               | BEF  | PARAMETER |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|-----------|
| Programm Nr. abfahren komplett                                                                                                                                                                                                                    | Programm             | PG   | 1-63      |
| 0 = Programm 115 max. 50 Programmzeilen, Programm 1663 max. 10 Programmzeilen 1 = Programm 15 max. 130 Programmzeilen, Programm 663 max 10 Programmzeilen Wichtig: Die Umschaltung des PMAP Parameters löscht jeweils den ganzen Programmspeicher | Program Mapping      | PMAP | 0,1/?     |
| Speichert Applikation inkl. Parameter in den Start-up Key                                                                                                                                                                                         | Save to Start-up Key | SVST |           |

# 11.6.12 Kraftsteuerung Forceteq® basic

| BESCHREIBUNG                                                                                                                                                                                                                                                                                                                                                                                                                        | KÜRZEL                  | BEF | PARAMETER                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|------------------------------------------|
| Force Calibration wird mit Distanzparameter gestartet. Wert von 1 bis 10'000'000 = Distanz in Inc. der Abtast-Fahrt ?= Rückgabe ob Abtast-Werte vorhanden sind 0 = Force Calibration Abtast-Werte löschen                                                                                                                                                                                                                           | Force Calibration       | FC  | 0-< Hub LINAX®/ELAX® oder weg ROTAX® / ? |
| Die Force Calibration arbeitet iterativ und verbessert sich bei Wiederholung. Oszilliert der Motor während der Force Calibration, werden falsche Werte gespeichert und die Oszillation verstärkt sich. In diesem Fall sind die Abtastwerte vor der Force Calibration mit FCO zu löschen In den Bibliotheken für den Betrieb mit Busmodul existiert dazu im Funktionsblock JS_MC_ForceCalibration der Eingang "Iterative FC disable" |                         |     |                                          |
| Wichtig:<br>Die Force Calibration Fahrt startet ab der aktuellen Ist Position                                                                                                                                                                                                                                                                                                                                                       |                         |     |                                          |
| Testfunktion zur Überprüfung der Force Calibration Wirkung durch manuelle Schlittenbewegung.  2 = Test Force Calibration Ein (ohne aktiver Kompensation)  1 = Test Force Calibration (mit aktiver Kompensation)  0 = Test Force Calibration Aus (Servo regelt auf Position)                                                                                                                                                         | Force Calibration Test  | FCT | 0,1,2 /?                                 |
| Status Force Calibration Abfrage: 0 = Keine Force Calibration Abtast-Werte vorhanden 1 = Force Calibration Abtast-Werte vorhanden                                                                                                                                                                                                                                                                                                   | Force Calibration Valid | FCV | xx / ?                                   |



| Automatische I_Force Drift Compensation Fahrt in positiver<br>Richtung                                                                                                                                                                                                                                                | I_Force Drift<br>Compensation Positive | IFDCP |                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|--------------------------|
| Automatische I_Force Drift Compensation Fahrt in negativer<br>Richtung                                                                                                                                                                                                                                                | I_Force Drift<br>Compensation Negative | IFDCN |                          |
| I_Force Drift Compensation Einstellung, bitweise codiert: Bit0: Kontinuierliche Kompensation bei ausgeschalteter Endstufe Bit1: Automatische Kompensationsfahrt vor Force Calibration Bit2: Kontinuierliche Kompensation bei eingeschalteter Endstufe, sobald Achse an geeigneter Position steht (siehe Befehl PIFDC) | I_Force Drift<br>Compensation Settings | IFDCS | 0-7 / ?                  |
| Position für I_Force Drift Compensation bei eingeschalteter<br>Endstufe, abhängig vom Motortyp                                                                                                                                                                                                                        | Position I_Force Drift Compensation    | PIFDC | ?                        |
| Maximal zulässiger kraftproportionaler Strom [x10mA]  0 = Deaktiviert  → Sobald der Strom erreicht wurde, wird Info "30" aktiviert und ist abrufbar über Prozess Status Register Bit 15 "I_FORCE_  LIMIT_REACHED" mit Befehl TPSR.  (Siehe Kapitel 11.6.19 Systeminformationen)                                       | Limit I_Force                          | LIF   | 0 – Wert von «I run» / ? |
| Ändern Limit DR_I_FORCE auf xx x 10mA<br>Wert xx überschreibt den aktuellen Parameter DR_I_Force, bis<br>DRIVE I_FORCE END                                                                                                                                                                                            | Change Limit I Force                   | CLIF  | xx                       |
| Fahren mit limitierter Kraft auf ein Objekt oder Endposition falls<br>kein Objekt vorhanden. xx= [1-10] Nr. des gewählten Drive<br>I_Force Parametersatzes                                                                                                                                                            | Drive I_Force                          | DIF   | xx                       |
| Kraftproportionaler IST-Stromwert gefiltert [mA]                                                                                                                                                                                                                                                                      | I Force Actual                         | IFA   |                          |
| Aktueller Motorstrom [mA]                                                                                                                                                                                                                                                                                             | Tell motor current                     | TMC   |                          |
| Auswahl der Sektoren die aktiv sein sollen z.B. xx = 100110-> aktiv sind Sektoren 2,3,6 binär von rechts LSB (binary notation, LSB = sector 1)                                                                                                                                                                        | Select Sectors                         | SSEC  | xx / ?                   |
| Liefert den I_FORCE Spitzenwert [x1mA].<br>xx=nicht Definiert -> Max Spitzenwert über alle Sektoren<br>xx=n -> Spitzenwert von Sektor n                                                                                                                                                                               | l Force Peak                           | IFPK  | xx                       |
| Zeigt die aktiven Sektoren welche nicht korrekt durchlaufen wurden.  z.B. xx = 1001->Fehler in Sektoren 1 und 4.  (binary notation, LSB = sector 1)                                                                                                                                                                   | Sector I_Force Curve<br>Failed         | SIFF  | xx / ?                   |
| Nimmt die aktuelle IST-Position als Offset für alle Sektoren mit<br>Neustart der Überwachung.<br>Weiter werden auch die Positionen "Wait for distance<br>greater/less" und "Jump if distance greater/less" um diesen<br>Offset geschoben.                                                                             | Take Position as Sector<br>Offset      | TPSO  |                          |
| Vorgeben des Offsets für alle Sektoren mit Neustart der<br>Überwachung.<br>xx = [Inc] Offset<br>Weiter werden auch die Positionen "Wait for distance<br>greater/less" und "Jump if distance greater/less" um diesen<br>Offset xx geschoben.<br>z.B. xx = 0, setzt den Offset auf 0                                    | Set Sector Offset                      | SSO   | xx / ?                   |
| Sektor Nummer Vorwahl bei dem die Parameter geändert<br>werden. xx = [1-10] Sektor Nummer, NSEC? = Abfrage der<br>gewählten Sektor Nummer                                                                                                                                                                             | Number of Sector for change parameter  | NSEC  | xx / ?                   |
| Start Distanz des Sektors<br>xx = [Inc] Startdistanz (Absolutposition – Sector Offset)                                                                                                                                                                                                                                | Sector I Force Start                   | SIFS  | xx / ?                   |
| End Distanz des Sektors<br>xx = [Inc] Enddistanz (Absolutposition – Sector Offset)                                                                                                                                                                                                                                    | Sector I Force End                     | SIFE  | xx / ?                   |
| Tiefstwert I_Force beim vorgewählten<br>Sektor. xx [x10mA]                                                                                                                                                                                                                                                            | I Force High                           | IFH   | xx / ?                   |

xx / ?

xx / ?

xx / ?



Höchstwert I\_Force beim vorgewählten Sektor. xx [x10mA]

Definition Übergang Entry und Exit im Sektor

xx = aktivierte Übergänge 1,2,3,4 Entry/Exit

| I Force Low                               | IFL         | xx / ? |
|-------------------------------------------|-------------|--------|
| Sector Transition Configuration Decimal   | STC         | xx / ? |
| Sector Transition Configuration Hexadecim | STCX<br>nal | xx / ? |

| Bit 1512       | 118      | 74   | 30       | XX     |
|----------------|----------|------|----------|--------|
| Entry          | not used | Exit | not used |        |
| 4 3 2 <b>1</b> | 0        | 4321 | 0        | Überg. |
| 0001           | 0000     | 0010 | 0000     | bin    |
| 1              | 0        | 2    | 0        | hex    |
|                | dec      |      |          |        |

Drive I\_Force Nummer Vorwahl bei dem die Parameter geändert Number of Drive I\_Force NDIF werden. xx= Drive I\_Force Nummer 1-10. NDIF? = Abfrage der to change parameter gewählten Sektor Nummer Beschleunigung bei Drive I\_Force Acceleration of selected **ADIF** xx [x1'000 inc/s<sup>2</sup>] Drive I\_Force Geschwindigkeit bei Drive I\_Force Speed of selected Drive **SDIF** xx [inc/s] I Force Stromlimitierung bei Drive I\_Force

# 11.6.13 Kraftsteuerung Forceteq® pro

| BESCHREIBUNG                                                                                                                                                                                                                                                                                                                                                                                                                            | KÜRZEL                 | BEF  | PARAMETER                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|---------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |      |                                             |
| Setzt die aktuell gemessene Kraft am Signateq® auf 0                                                                                                                                                                                                                                                                                                                                                                                    | Clear Force Offset     | CLFO |                                             |
| Einstellung der Forteteq® Mode<br>0 = Motor current (Forceteq® basic)<br>1 = Force sensor (Forceteq® pro)                                                                                                                                                                                                                                                                                                                               | Forceteq Mode          | FTM  | 0,1/?                                       |
| Force Calibration wird mit Distanzparameter gestartet. Wert von 1 bis 10'000'000 = Distanz in Inc. der Abtast-Fahrt ?= Rückgabe ob Abtast-Werte vorhanden sind 0 = Force Calibration Abtast-Werte löschen                                                                                                                                                                                                                               | Force Calibration      | FC   | 0-< Hub LINAX®/ELAX®<br>oder weg ROTAX® / ? |
| Die Force Calibration arbeitet iterativ und verbessert sich bei Wiederholung. Oszilliert der Motor während der Force Calibration, werden falsche Werte gespeichert und die Oszillation verstärkt sich. In diesem Fall ist sind die Abtastwerte vor der Force Calibration mit FCO zu löschen In den Bibliotheken für den Betrieb mit Busmodul existiert dazu im Funktionsblock JS_MC_ForceCalibration der Eingang "Iterative FC disable" |                        |      |                                             |
| Wichtig:<br>Die Force Calibration Fahrt startet ab der aktuellen Ist Position                                                                                                                                                                                                                                                                                                                                                           |                        |      |                                             |
| Testfunktion zur Überprüfung der Force Calibration Wirkung durch manuelle Schlittenbewegung.  2 = Test Force Calibration Ein (ohne aktiver Kompensation)  1 = Test Force Calibration (mit aktiver Kompensation)  0 = Test Force Calibration Aus (Servo regelt auf Position)                                                                                                                                                             | Force Calibration Test | FCT  | 0,1,2 / ?                                   |



| Status Force Calibration Abfrage:<br>0 = Keine Force Calibration Abtast-Werte vorhanden<br>1 = Force Calibration Abtast-Werte vorhanden                                                                                                                                            | Force Calibration Valid               | FCV  | xx / ?          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|-----------------|
| Maximal zulässiger kraftproportionale Strom [mN]  0 = Deaktiviert  → Sobald der Strom erreicht wurde, wird Info "31" aktiviert und ist abrufbar über Prozess Status Register Bit 27 "FORCE_  LIMIT_REACHED" mit Befehl TPSR.  (Siehe Kapitel 11.6.19 Systeminformationen)          | Limit Force                           | LF   | 0 – 200'000 / ? |
| Ändern Limit DR_FORCE auf xx mN<br>Wert xx überschreibt den aktuellen Parameter DR_Force, bis<br>DRIVE FORCE END                                                                                                                                                                   | Change Limit Force                    | CLF  | xx              |
| Fahren mit limitierter Kraft auf ein Objekt oder Endposition falls<br>kein Objekt vorhanden.<br>xx= [1-10] Nr. des gewählten Drive Force Parametersatzes                                                                                                                           | Drive Force                           | DF   | XX              |
| Liefert die aktuell anliegende Kraft am Kraftsensor [mN]                                                                                                                                                                                                                           | Tell Force                            | TF   |                 |
| Auswahl der Sektoren die aktiv sein sollen z.B. xx = 100110-> aktiv sind Sektoren 2,3,6 binär von rechts LSB (binary notation, LSB = sector 1)                                                                                                                                     | Select Sectors                        | SSEC | xx / ?          |
| Liefert den FORCE Spitzenwert [mN].<br>xx=nicht Definiert -> Max Spitzenwert über alle Sektoren<br>xx=n -> Spitzenwert von Sektor n                                                                                                                                                | Force Peak                            | FPK  | XX              |
| Zeigt die aktiven Sektoren welche nicht korrekt durchlaufen<br>wurden.<br>z.B. xx = 1001->Fehler in Sektoren 1 und 4.<br>(binary notation, LSB = sector 1)                                                                                                                         | Sector Force Curve Failed             | SFF  | xx / ?          |
| Nimmt die aktuelle IST-Position als Offset für alle Sektoren mit<br>Neustart der Überwachung.<br>Weiter werden auch die Positionen "Wait for distance<br>greater/less" und "Jump if distance greater/less" um diesen<br>Offset geschoben.                                          | Take Position as Sector<br>Offset     | TPSO |                 |
| Vorgeben des Offsets für alle Sektoren mit Neustart der<br>Überwachung.<br>xx = [Inc] Offset<br>Weiter werden auch die Positionen "Wait for distance<br>greater/less" und "Jump if distance greater/less" um diesen<br>Offset xx geschoben.<br>z.B. xx = 0, setzt den Offset auf 0 | Set Sector Offset                     | SSO  | xx / ?          |
| Sektor Nummer Vorwahl bei dem die Parameter geändert<br>werden. xx = [1-10] Sektor Nummer, NSEC? = Abfrage der<br>gewählten Sektor Nummer                                                                                                                                          | Number of Sector for change parameter | NSEC | xx / ?          |
| Start Distanz des Sektors<br>xx = [Inc] Startdistanz (Absolutposition – Sector Offset)                                                                                                                                                                                             | Sector Force Start                    | SFS  | xx / ?          |
| End Distanz des Sektors<br>xx = [Inc] Enddistanz (Absolutposition – Sector Offset)                                                                                                                                                                                                 | Sector Force End                      | SFE  | xx / ?          |
| Tiefstwert Force beim vorgewählten Sektor. xx [mN]                                                                                                                                                                                                                                 | Force High                            | FH   | xx / ?          |
| Höchstwert Force beim vorgewählten Sektor. xx [mN]                                                                                                                                                                                                                                 | Force Low                             | FL   | xx / ?          |



Definition Übergang Entry und Exit im Sektor xx = aktivierte Übergänge 1,2,3,4 Entry/Exit

| Sector Transition       | STC  | xx / ? |
|-------------------------|------|--------|
| Configuration Decimal   |      |        |
| Sector Transition       | STCX | xx / 1 |
| Configuration Hexadecin | nal  |        |

| Bit 1512       | 118      | 74   | 30       | XX     |
|----------------|----------|------|----------|--------|
| Entry          | not used | Exit | not used |        |
| 4 3 2 <b>1</b> | 0        | 4321 | 0        | Überg. |
| 0001           | 0000     | 0010 | 0000     | bin    |
| 1              | 0        | 2    | 0        | hex    |
|                | dec      |      |          |        |

Drive Force Nummer Vorwahl bei dem die Parameter geändert werden.

Number of Drive Force to **NDF** xx / ? change parameter

DDF

xx / ?

xx = Drive Force Nummer 1-10 NDF? = Abfrage der gewählten Sektor Nummer

> Acceleration of selected Beschleunigung bei Drive Force ADF xx / ? xx [x1'000 inc/s<sup>2</sup>] Drive Force Speed of selected SDF Geschwindigkeit bei Drive Force xx / ? Drive Force xx [inc/s] Force Limit of selected FDF xx / ? Drive Force

Kraftlimitierung bei Drive Force xx [mN] Fahrrichtung bei Drive Force xx = 0 -> positiv, xx = 1 -> negativ

Direction of selected

11.6.14 Signateq®

**Drive Force** 

| BESCHREIBUNG                                         | KÜRZEL             | BEF  | PARAMETER                                     |
|------------------------------------------------------|--------------------|------|-----------------------------------------------|
| Bandbreite des Filters vom Signateq® Messverstärker  | Signateq Bandwidth | STBW | 100, 200, 300, 500, 1000,<br>2000, 3000, 5000 |
| Setzt die aktuell gemessene Kraft am Signateq® auf 0 | Clear Force Offset | CLFO |                                               |

#### 11.6.15 Events

| BESCHREIBUNG                                                    | KÜRZEL                       | BEF | PARAMETER |  |
|-----------------------------------------------------------------|------------------------------|-----|-----------|--|
|                                                                 |                              |     |           |  |
| Event Aktivierung                                               | <b>Event Status or Input</b> | EVT | 0,1       |  |
| 0=Alle Eingangsevents freigeben 1C= Eingangsevent 112 freigeben | Event Track Input            | ETI | 0-9, A-C  |  |
| 0= Alle Eingangsevents sperren 1C=Eingangsevent 112 sperren     | Disable Track Input          | DTI | 0-9, A-C  |  |



# 11.6.16 Input / Output

| BESCHREIBUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KÜRZEL                  | BEF  | PARAMETER                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------------------------|
| Ausgangstyp setzen (Source, Sink, Source/Sink) -> siehe Kapitel 6.4 Output Konfiguration                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Set Output Type         | SOT  | 0-65535                   |
| High / Low Aktivität der Ausgänge setzen -> siehe Kapitel 6.4 Output Konfiguration                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Set Output Activity     | SOA  | 0-255                     |
| Ausgang setzen auf logisch 1 (Pegel gemäss SOT, SOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Set Output              | so   | 1-8                       |
| Wie SO, jedoch alle Ausgänge gleichzeitig bitorientiert setzen<br>Bit 0 = Ausgang 1, Bit 7 = Ausgang 8                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Set Output Hex          | SOX  | 00-FF                     |
| Ausgang setzen auf logisch 0 (Pegel gemäss SOT, SOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Clear Output            | СО   | 1-8                       |
| Zustand aller Output,<br>0=Logisch 0, 1=Logisch 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tell Output             | то   |                           |
| Zustand aller Outputs im HEX Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tell Output HEX         | тох  |                           |
| Output Nummer vorladen für Zuweisung der Output Funktion mit<br>Kommando TYOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number Output Function  | NOF  | 1-8                       |
| Typ der Output Funktion der mit NOF vorgeladenen Output Nummer zuweisen (0 = keine Funktion, 1 = REFERENCE, 2 = IN MOTION, 3 = END OF PROGRAM, 4 = TRIGGER, 5 = ERROR, 6 = BRAKE, 7 = IN POSITION, 8 = I FORCE MAX LIMIT/FORCE MAX LIMIT, 9 = I FORCE IN SECTOR/FORCE IN SECTOR, 10 = IN SECTOR, 11 = IN FORCE, 12 = WARNING, 13 = INFORMATION, 14 = STO1, 15 = STO2, 16 = SS11, 17 = SS12, 18 = SS21, 19 = SS22, 20 = SLS1, 21 = SLS2)                                                                                                                      | Type Output Function    | TYOF | 0-21                      |
| Trigger aufwärts zählend, absolut, am Output #x von O-FUNCTION<br>für 5ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trigger upward          | TGU  | ± 2'000'000'000 Inkrement |
| Trigger abwärts zählend, absolut am Output #x von O-FUNCTION<br>für 5ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trigger downward        | TGD  | ± 2'000'000'000 Inkrement |
| 0=alle Input HIGH aktiv, 1= alle Input LOW aktiv,<br>2=individuelle Inputaktivitätsselektierung gemäss ILAS (Wert 0 und<br>1 setzt ILAS auf 0x000 bzw. 0xFFF)                                                                                                                                                                                                                                                                                                                                                                                                | Input LOW aktiv         | ILA  | 0-2 / ?                   |
| Individuelle Inputaktivitätsselektierung, 0=Input HIGH aktiv,<br>1=Input LOW aktiv<br>Erster Hex-Wert binäre Eingänge 9-12, nur 0 oder F,<br>2. und 3. Hex-Wert für Input 1-8 (Wert 0x000 und 0xFFF setzt ILA<br>auf 0 bzw. 1, alle anderen Werte setzt ILA auf 2)                                                                                                                                                                                                                                                                                           | Input Low Active Single | ILAS | 0xx / Fxx / ?             |
| Zustand aller Input, 0=Low 1=High / ? inkl. Zuweisung der Eingangs Nummer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tell Input              | TI   | 1-12 / ?                  |
| Zustand Einzel Input, 0=Low 1=High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tell Input              | TI   | 1-12                      |
| Zustand aller Input im HEX Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tell Input HEX          | TIX  |                           |
| Input Nummer vorladen für Zuweisung der Input Funktion mit<br>Kommando TYIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number Input Function   | NIF  | 1-8                       |
| Typ der Input Funktion der mit NIF vorgeladenen Input Nummer zuweisen (0 = keine Funktion, 1 = REFERENCE, 2 = INDEX, 3 = PROGRAM, 4 = SET OUTPUT, 5 = CLEAR OUTPUT, 6 = JOG POSITIVE, 7 = JOG NEGATIVE, 8 = CAPTURE POSITION, 9 = INTERRUPT PROGRAM, 10 = STOP IMPULS, 11 = STOP IMPULS COUNTER, 12 = LIMIT SWITCH NEGATIVE, 13 = LIMIT SWITCH POSITIVE, 14 = EMERGENCY EXIT, 15 = EMERGEMCY EXIT POWER ON, 16 = POWER CONTINUE, 17 = PROFILE, 18 = REFERENCE LIMIT STOP, 19 = OVERRIDE, 20 = PROGRAM EXIT, 21 = DRIVE I_FORCE/DRIVE FORCE, 22 = POWER QUIT) | Type Input Function     | TYIF | 0-22                      |



| Parameter A der Input Funktion der mit NIF vorgeladenen Input<br>Nummer (Wert abhängig von Input Funktion, analog zu Wert xx<br>beschrieben in Kapitel 11.15.1 Auswahl Input Funktionen) | Parameter A              | PAIF | XX              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|-----------------|
| Parameter B der Input Funktion der mit NIF vorgeladenen Input<br>Nummer (Wert abhängig von Input Funktion, analog zu Wert yy<br>beschrieben in Kapitel 11.15.1 Auswahl Input Funktionen) | Parameter B              | PBIF | уу              |
| Parameter C der Input Funktion der mit NIF vorgeladenen Input<br>Nummer (Wert abhängig von Input Funktion, analog zu Wert zz<br>beschrieben in Kapitel 11.15.1 Auswahl Input Funktionen) | Parameter C              | PCIF | ZZ              |
| Zeigt Ist-Position erfasst mit Input                                                                                                                                                     | Tell Capture Position    | TCP  | 1-8             |
| Zeigt Ist-Position erfasst mit Input 12                                                                                                                                                  | Tell Capture Pos. Buffer | ТСРВ | 1-8             |
| Alle 8 Capture Position Register und Buffer auf 0 setzen                                                                                                                                 | Clear Capture Position   | CLCP | 1-8 (alle)      |
| Capture Position Funktion über Input 12 aktivieren                                                                                                                                       | Capture Pos. Input 12    | CP12 | 0,1             |
| Break Delay in [ms]  Achtung: Nicht anwendbar mit einer SMU                                                                                                                              | Break Delay              | BRKD | 1-1000 (ms) / ? |

# 11.6.17 Korrekturtabelle

| BESCHREIBUNG                                                                                                                                                            | KÜRZEL                              | BEF  | PARAMETER           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------|---------------------|
| Status der Korrekturtabelle:<br>0=Korrekturtabelle deaktiviert<br>1=Korrekturtabelle aktiviert<br>2=Korrekturtabelle initialisiert (physikalischer Wert = Encoder Wert) | Correction Table State              | СТАВ | 0-2 / ?             |
| Startposition der Korrekturtabelle in [inc]                                                                                                                             | Correction Table Position Start     | CTPS | 0-500'000'000 / ?   |
| Abstand zwischen den Einträgen in der Korrekturtabelle in [inc]                                                                                                         | Correction Table Distance Points    | CTDP | 10-30'000'000 / ?   |
| Absolute Encoder Position in Korrekturtabelle auswählen in [inc]                                                                                                        | Correction Table Preselect Position | СТРО | 0-2'000'000'000 / ? |
| Physikalische Positionsabweichung bei ausgewählter absoluter<br>Encoder Position in Korrekturtabelle in [inc]                                                           | Correction Table Value              | CTVA | -30'000-30'000 / ?  |



# 11.6.18 Limit Position ELAX®

| BESCHREIBUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KÜRZEL                                        | BEF     | PARAMETER                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------|-----------------------------------------------------------------------------------------|
| Kalibration des internen mechanischen Anschlags positiv starten.<br>Nach der Kalibration kann der Wert mit <i>DMLPP</i> ausgelesen werden.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mechanical Limit<br>Calibration               | MLC     |                                                                                         |
| Position des detektierten <b>internen</b> mechanischen Anschlags positiv ? = Rückgabe der Position des detektierten internen mechanischen Anschlags positiv 0 = Löschen der Position des detektierten internen mechanischen Anschlags positiv  Hinweis: -Ist DMLPP gelöscht (DMLPP = 0), so wird für die Referenzfahrt in positiver Richtung bei internem mechanischem Anschlag der Wert <hublänge +="" 1mm="" elax=""> verwendetIst die Position des internen mechanischen Anschlags positiv bekannt, so kann der Wert auch direkt ohne Kalibration geschrieben werden (also ohne Aufruf von MLC).</hublänge>                                                                                                                                                                                                                                       | Detected Mechanical Limi<br>Position Positive | t DMLPP | 0, <hublänge elax=""> -<br/><hublänge +="" 3mm="" elax=""><br/>/?</hublänge></hublänge> |
| Position eines <b>extern</b> angebrachten mechanischen Anschlags negativ ? = Rückgabe der Position des extern angebrachten mechanischen Anschlags negativ 0 = Löschen der Position des extern angebrachten mechanischen Anschlags negativ  Hinweis: - MLPN muss immer kleiner als MLPP gewählt werden -lst MLPN gelöscht (MLPN = 0), so wird für die Referenzfahrt in negativer Richtung der interne mechanische Anschlag negativ des ELAX® selbst verwendet, welcher per Definition bei Position <-  1mm> liegtDie Position eines extern angebrachten Anschlags muss genau bekannt sein. Bei falscher Angabe der Position des externen Anschlags kann die Ausrichtung der Spulen zu den Magneten nicht korrekt erfolgen und der Motor ist nicht lauffähig.                                                                                          | Mechanical Limit Position<br>Negative         | MLPN    | <-3mm> - <hublänge elax<br="">+ 3mm&gt; / ?</hublänge>                                  |
| Position eines <b>extern</b> angebrachten mechanischen Anschlag positiv ? = Rückgabe der Position des extern angebrachten mechanischen Anschlags positiv 0 = Löschen der Position des extern angebrachten mechanischen Anschlags positiv  Hinweis:  - MLPP muss immer grösser als MLPN gewählt werden -Ist MLPP gelöscht (MLPP = 0), so wird für die Referenzfahrt in positiver Richtung der interne mechanische Anschlag positiv des ELAX® selbst verwendet, welcher Standardmässig bei der Position <hubliange +="" 1mm="" elax=""> liegt, oder welcher mit dem Befehl MLC kalibriert wurdeDie Position eines extern angebrachten Anschlags muss genau bekannt sein. Bei falscher Angabe der Position des externen Anschlags kann die Ausrichtung der Spulen zu den Magneten nicht korrekt erfolgen und der Motor ist nicht lauffähig.</hubliange> | Mechanical Limit Position<br>Positive         | MLPP    | <-3mm> - <hublänge elax<br="">+ 3mm&gt; / ?</hublänge>                                  |



# 11.6.19 Systeminformationen

| BESCHREIBUNG                                                                                                                                                      | KÜRZEL                          | BEF                 | PARAMETER                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|----------------------------|
| Ist-Position ± 2*10E9                                                                                                                                             | Tell Position                   | TP                  |                            |
|                                                                                                                                                                   |                                 |                     |                            |
| Aktuelle Motorgeschwindigkeit in [inc/s]                                                                                                                          | Tell Velocity                   | TV                  |                            |
| Motortemperatur in Grad Celsius                                                                                                                                   | Tell Temperature                | TT                  |                            |
| Status: 0 = Power OFF, 1= Power On,2= in Fahrt, 9= Error                                                                                                          | Tell Status                     | TS                  | Neu: Bitte nutzen Sie TPSR |
| Bitcodierter Prozessstatus, Rückgabestring stellt 4 Bytes in HEX-<br>Format dar<br>ERROR = BIT 0<br>REFERENCE = BIT 1<br>IN_MOTION = BIT 2<br>IN POSITION = BIT 3 | Tell Process Status<br>Register | TPSR                |                            |
| END_OF_PROGRAM = BIT 4                                                                                                                                            |                                 |                     |                            |
| IN_FORCE = BIT 5<br>IN_SECTOR = BIT 6<br>FORCE_IN_SECTOR = BIT 7                                                                                                  |                                 |                     |                            |
| INVERTER_VOLTAGE = BIT 8 END_OF_GANTRY_INIT = BIT 9                                                                                                               |                                 |                     |                            |
| NEGATIVE_LIMIT_SWITCH = BIT 10                                                                                                                                    |                                 |                     |                            |
| POSITIVE_LIMIT_SWITCH = BIT 11<br>EMERGENCY EXIT 1, REMAIN POWER ON = BIT 12                                                                                      |                                 |                     |                            |
| (Funktion nur <b>ohne</b> Busmodul verwendbar.                                                                                                                    |                                 |                     |                            |
| Mit Busmodul, Funktion "EMERGENCY EXIT" anwenden).                                                                                                                |                                 |                     |                            |
| EMERGENCY_EXIT, POWER OFF= BIT 13                                                                                                                                 |                                 |                     |                            |
| FORCE_CALIBRATION_ACTIVE = BIT 14                                                                                                                                 |                                 |                     |                            |
| I_FORCE_LIMIT_REACHED = BIT 15                                                                                                                                    |                                 |                     |                            |
| STO PRIMED/HIT = BIT 16<br>SS1 PRIMED/HIT = BIT 17                                                                                                                |                                 |                     |                            |
| SS2 PRIMED = BIT 18                                                                                                                                               |                                 |                     |                            |
| SS2 HIT = BIT 19                                                                                                                                                  |                                 |                     |                            |
| SLS PRIMED = BIT 20                                                                                                                                               |                                 |                     |                            |
| SLS SPEED HIT = BIT 21                                                                                                                                            |                                 |                     |                            |
| SLS POSITION HIT = BIT 22<br>WARNING = BIT 23                                                                                                                     |                                 |                     |                            |
| INFORMATION = BIT 24                                                                                                                                              |                                 |                     |                            |
| PHASING DONE = BIT 25                                                                                                                                             |                                 |                     |                            |
| I_FORCE_DRIFT_COMPENSATION_DRIVE_ACTIVE = BIT 26                                                                                                                  |                                 |                     |                            |
| FORCE_LIMIT_REACHED = BIT 27                                                                                                                                      |                                 |                     |                            |
| Aktueller Motorstrom [mA]                                                                                                                                         | Tell Motor Current              | TMC                 |                            |
| Liefert die Fahrzeit in Millisekunden der zuletzt ausgeführten<br>Trajektorie                                                                                     | Tell Motion Time                | TMT                 |                            |
| Lesen des Prozesszeit in [ms] Siehe Programmfunktionen TIMER_START, TIMER_STOP                                                                                    | Tell Process Time               | TPT                 |                            |
| Versions Abfrage der installierten Firmware                                                                                                                       | Version                         | VER                 |                            |
| Liefert Versionsangaben von Firmware, Bootloader, WebMotion®                                                                                                      | Version All                     | VERA                |                            |
| Versions Abfrage der SMU Firmware                                                                                                                                 | Version SMU                     | VERS                |                            |
| Versions Abfrage der Busmodul Firmware                                                                                                                            | Version Busmodul                | VERB                |                            |
| Versions Abfrage des Bootloaders (ab Version V4.00)                                                                                                               | Version Bootloader              | VERL                |                            |
| Abfrage der Ethernet MAC Adresse                                                                                                                                  | Ethernet MAC Adresse            | <b>EMAC</b>         | ?                          |
| MAC Adresse Abfrage vom PROFINET / Powerlink / EtherNet/IP<br>Busmodul                                                                                            | MAC Adresse Busmodul            | MACB                |                            |
| Temperaturüberwachung, momentaner Integrationswert                                                                                                                | I2T                             | 12T1)               |                            |
| Temperaturüberwachung, maximaler Integrationswert                                                                                                                 | I2TM                            | 12TM <sup>1</sup> ) |                            |



#### 11.6.20 Ethernet

| BESCHREIBUNG                                                                                                                                                         | KÜRZEL                                                                                                                                                                                                                                                                                                                                                                                                                  | BEF                                                                                                                                                                                                                                                                                                                                                                                                                | PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ethernet TCP/IP-Adresse<br>Beispiel: EIP192.168.2.100 (Standard-Wert)                                                                                                | Ethernet TCP/IP Adresse                                                                                                                                                                                                                                                                                                                                                                                                 | EIP                                                                                                                                                                                                                                                                                                                                                                                                                | xxx.xxx.xxx.xxx / ?                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ethernet NetMask Beispiel: ENM255.255.255.0 (Standard-Wert)                                                                                                          | Ethernet Net Mask                                                                                                                                                                                                                                                                                                                                                                                                       | ENM                                                                                                                                                                                                                                                                                                                                                                                                                | xxx.xxx.xxx./?                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ethernet Gateway Beispiel: EGW192.168.1.10 (Standard-Wert)                                                                                                           | Ethernet Gateway                                                                                                                                                                                                                                                                                                                                                                                                        | EGW                                                                                                                                                                                                                                                                                                                                                                                                                | xxx.xxx.xxx./?                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ethernet Port Nummer<br>Beispiel: EPRT10001 (Standard-Wert)                                                                                                          | Ethernet Port                                                                                                                                                                                                                                                                                                                                                                                                           | EPRT                                                                                                                                                                                                                                                                                                                                                                                                               | 1 – 65535 / ?                                                                                                                                                                                                                                                                                                                                                                                                               |
| Abfrage der Ethernet MAC Adresse                                                                                                                                     | Ethernet MAC Adresse                                                                                                                                                                                                                                                                                                                                                                                                    | <b>EMAC</b>                                                                                                                                                                                                                                                                                                                                                                                                        | ?                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rücksetzung der Ethernet TCP/IP Einstellungen<br>IP Adresse zu 192.168.2.100<br>NetMask zu 255.255.255.0<br>Ethernet Gateway zu 192.168.1.10<br>Port Nummer zu 10001 | Reset Ethernet                                                                                                                                                                                                                                                                                                                                                                                                          | RESETH                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                      | Ethernet TCP/IP-Adresse Beispiel: EIP192.168.2.100 (Standard-Wert) Ethernet NetMask Beispiel: ENM255.255.255.0 (Standard-Wert) Ethernet Gateway Beispiel: EGW192.168.1.10 (Standard-Wert) Ethernet Port Nummer Beispiel: EPRT10001 (Standard-Wert) Abfrage der Ethernet MAC Adresse Rücksetzung der Ethernet TCP/IP Einstellungen IP Adresse zu 192.168.2.100 NetMask zu 255.255.255.0 Ethernet Gateway zu 192.168.1.10 | Ethernet TCP/IP-Adresse Beispiel: EIP192.168.2.100 (Standard-Wert)  Ethernet NetMask Beispiel: ENM255.255.255.0 (Standard-Wert)  Ethernet Gateway Beispiel: EGW192.168.1.10 (Standard-Wert)  Ethernet Port Nummer Beispiel: EPRT10001 (Standard-Wert)  Abfrage der Ethernet MAC Adresse Rücksetzung der Ethernet TCP/IP Einstellungen IP Adresse zu 192.168.2.100 NetMask zu 255.255.0 Ethernet TCP/IP Einstell.10 | Ethernet TCP/IP-Adresse Beispiel: EIP192.168.2.100 (Standard-Wert)  Ethernet NetMask Beispiel: ENM255.255.255.0 (Standard-Wert)  Ethernet Gateway Beispiel: EGW192.168.1.10 (Standard-Wert)  Ethernet Port Nummer Beispiel: EPRT10001 (Standard-Wert)  Abfrage der Ethernet MAC Adresse Rücksetzung der Ethernet TCP/IP Einstellungen IP Adresse zu 192.168.2.100 NetMask zu 255.255.255.0 Ethernet Gateway zu 192.168.1.10 |

#### 11.6.21 Busmodul-Information

Automatic Reference

| BESCHREIBUNG                                                                                                                                                               | KÜRZEL                | BEF  | PARAMETER             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|-----------------------|
| Baudrate der optionalen CANopen Schnittstelle                                                                                                                              | CAN Baudrate          | САВ  | 1'000 - 1'000'000 / ? |
| Vorgabe der Zykluszeit in Mikrosekunden bei Cyclic Synchronous<br>Position Mode (DS402). Wird zur Interpolation benötigt. Nur<br>Vielfaches von 100 Mikrosekunden erlaubt. | PDO Cycle Time        | PCT  | 100 - 10'000 /?       |
| Versions Abfrage der Busmodul Firmware                                                                                                                                     | Version Busmodule     | VERB |                       |
| IP Adresse Abfragen EtherNet/IP Module (ab Version V4.00)                                                                                                                  | IP Adresse Busmodule  | EIPB |                       |
| Busmodul zurück setzen                                                                                                                                                     | Reset Busmodule       | RESB |                       |
| MAC Adresse Abfrage vom PROFINET / Powerlink / EtherNet/IP                                                                                                                 | MAC Adresse Busmodule | MACB |                       |
|                                                                                                                                                                            | 11.6.22 CANopen       |      |                       |
| BESCHREIBUNG                                                                                                                                                               | KÜRZEL                | BEF  | PARAMETER             |
| :P402 Set Point Acknowledge" auf Verhalten kleiner oder gleich                                                                                                             | Set Point ACK disable | SPAD | 0.1 / ?               |

Firmware V3.68H zurücksetzen.

Mode of Operation 6 erreicht.

Automatische Referenzierung, wenn DS402

0,1/?

AREF



# 11.6.23 Fehlerausgabe

| BESCHREIBUNG                                                                                       | KÜRZEL                 | BEF   | PARAMETER |
|----------------------------------------------------------------------------------------------------|------------------------|-------|-----------|
|                                                                                                    |                        |       |           |
| Error Nummer 01-99                                                                                 | Tell Error             | TE    |           |
| Error Nummer Beschreibung als String                                                               | Tell Error String      | TES   |           |
| Ausgabe des Errorbuffers (letzte 8 aufgetretene Informationen,<br>Warnungen oder Fehler)           | Tell Error Buffer      | TEB   |           |
| Beschrieb des aktuellen Error Zustands der SMU (Nur möglich, wenn SMU vorhanden)                   | Tell Error SMU         | TESM  |           |
| Beschrieb des Errorzustandes der SMU zum Zeitpunkt des Fehler 89 (Nur möglich, wenn SMU vorhanden) | Tell Error SMU History | TESMH |           |

# 11.6.24 Systemüberwachung

| BESCHREIBUNG                                                                                                                                                                                                                                                                         | KÜRZEL                                   | BEF   | PARAMETER       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|-----------------|
| Aus- bzw. Einschalten der Encoder Plausibilitätsprüfung:<br>0=Encoder Plausibilitätsprüfung eingeschalten<br>1= Encoder Plausibilitätsprüfung ausgeschaltet<br>(nur bei rotativen Motoren möglich)                                                                                   | Encoder Plausibility<br>Checking Disable | ENCPD | 0,1/?           |
| Watchdog für Serielle/Ethernet Schnittstelle, 0 = Deaktiviert 1-60'000 = Watchdog Zeit in [ms]. Falls bei eingeschalteter Endstufe für <wd> ms kein ASCII-Zeichen über die Serielle oder Ethernet empfangen wurde, wird die Endstufe ausgeschaltet und Fehler 77 wird angezeigt</wd> | Watchdog                                 | WD    | 0-60'000 ms / ? |



#### 11.7 Move Axis by Forceteq®

Die Forceteq® Kraftmesstechnologie ist in zwei verschiedenen Modi verfügbar:

**Forceteq® basic**: Strombasiert mit selbst kalibrierebarem Motor -> FORCETEQ® BY MOTOR CURRENT

> **Forceteq® pro**: Präzis mit Signateq® und externem Kraftsensor -> FORCETEQ® BY FORCE SENSOR®

> Die Kraftprozesse beim XENAX Xvi Servocontroller umfassen 4 Funktionalitäten:

- I\_FORCE CALIBRATION: Kalibration des Antriebs durch Erfassen aller Leerlaufkräfte inkl. Gewicht des kundenseitigen Aufbaus. Das ist die Vorbedingung um anschliessend die externen Applikationskräfte genau zu bestimmen.
- I\_FORCE / FORCE LIMITATION: Fahren mit limitierter
   Kraft auf ein Objekt oder Endposition falls keine Objekte
   vorhanden (z.B. Teile einfügen). Oder fahren mit ganz
   kleiner Kraft zum Erkennen der "Objekt
   Berührungsposition".
  - I\_FORCE / FORCE MONITORING: Überwachen des Kraftverlaufs durch definieren von Sektoren im Kraft/Wegdiagramm (z.B. Schalter prüfen). Diese Sektoren können automatisch auf die "Objekt Berührungsposition" ausgerichtet werden.
- I\_FORCE / FORCE CONTROL: Kombination der verschiedenen FORCE Funktionalitäten zu einem Programm. Damit wird es möglich die Kraftprozesse dezentral, im standalone Betrieb zu nutzen. Selbstverständlich können die FORCE Funktionalitäten auch durch eine übergeordnete SPS via Ethernet Feldbus aufgerufen werden.

Mehr Informationen zum Kraftprozess finden sie im Kapitel 14 Forceteq® Kraftmesstechnologie.





#### 11.8 Move Axis Motion Diagram

Aufzeichnung von Position, Geschwindigkeit, IForce, Schleppfehler und Kraft.

#### **LOGGING AUTO**

Aufzeichnung startet, sobald eine Fahrt startet. Aufzeichnung endet, sobald die Fahrt beendet ist und ein allfällig laufendes Programm beendet ist

#### **LOGGING TIME**

Aufzeichnung startet, sobald eine Fahrt startet. Aufzeichnung endet nach fix eingestellter Zeit (2-8000ms)

#### record new

Neue Aufzeichnung. Warten bis Meldung "ready for recording next motion" angezeigt wird. Fahrt auslösen im Kommandofeld (move axis / by click oder by command line) z.B. G44000

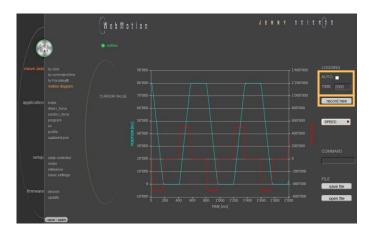
#### **SPEED**

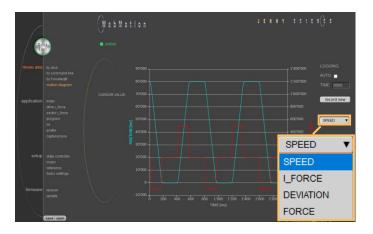
Zeichnet Geschwindigkeit in Inkrement pro Sekunde abhängig der Position auf.

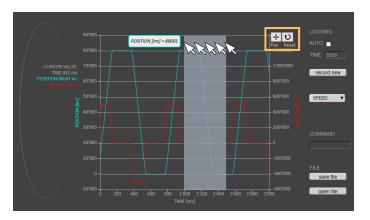
#### I\_FORCE

Zeichnet den Stromverbrauch in Milliampere abhängig der Position auf.

#### **DEVIATION**


Zeichnet den Schleppfehler in Inkrement abhängig der Position auf.


#### **FORCE**

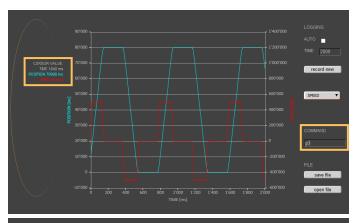

Zeichnet die Kraft in Newton abhängig der Position auf (Nur mit Forceteq® pro möglich).

# Zoom

Zoom von Teilstrecken in der Zeitachse. Durch ziehen der gedrückten Maus über einen Zeitabschnitt, kann dieser Teil gezoomt werden. Die Taste "Reset" macht den Zoomvorgang wieder rückgängig. Mit der Taste "Pan" kann die Zeitachse mit der Maus geschoben werden.





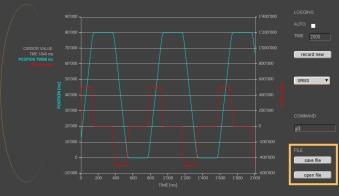



#### Command

Eingabe Fahrkommando. z.B. Startposition des Motors REF, G0, fahren auf Position oder Repeat Reverse (RR).

#### **CURSOR VALUE**

Zeigt die aktuellen Werte zum Zeitpunkt des Cursors in der Aufzeichnung.




#### safe file

Speichert eine Aufzeichnung auf dem PC.

#### open file

Zeigt eine auf dem PC gespeicherte Aufzeichnung an. Das Laden hat kein Einfluss auf die Parameter des Servocontrollers.





#### 11.9 Index

Ein Index ist ein Fahrsatz bestehend aus Beschleunigung (ACC), Geschwindigkeit (SPEED), Distanz (DISTANCE) und TYPE der Distanz ("ABSOLUTE" im Bezug auf mechanischen Nullpunkt oder "RELATIVE" im Bezug zu der aktuellen Position des Motors).

Die Werte beziehen sich immer auf Inkremente des Encoders. Die INDEXE vereinfachen die Programmierung und reduzieren die Kommunikationszeit bei serieller Ansteuerung, Aufruf

mit IXxx<CR>. Es können bis zu 50 INDEX vordefiniert werden.

#### **NEW**

Neuer Index erstellen

#### **Parameter vom Index**

 $\begin{array}{lll} \mbox{ACCx1000} & \mbox{Beschleunigung } (2\mbox{-}1'000'000'000 \ x \ 1000 \ lnc/s^2) \\ \mbox{SPEED} & \mbox{Geschwindigkeit } (10\mbox{-}100'000'000 \ lnc/s) \\ \mbox{DISTANCE} & \mbox{Distanz in Inc} \end{array}$ 

TYPE A

ABSOLUTE (Position), RELATIVE (Weg)

#### **COMMANDS**

CLEAR = Löscht den Index
TEACH POS = Übernahme der aktuellen Position in
das Feld "DISTANCE"
EXECUTE = Führt den Index aus
COPY TO IXxx = Der Index wird in einen neuen Index
kopiert



### 11.10 Drive I Force (Forceteg® basic)

Ein DRIVE I\_FORCE ist eine Fahrt auf Kraft, bestehend aus Beschleunigung (ACC), Geschwindigkeit (SPEED), Strom (I\_FORCE) und Fahrrichtung (DIRECTION).

Es können bis zu 10 DRIVE I\_FORCE gespeichert werden.

#### NEW

Neuer Drive I\_Force erstellen

#### Parameter vom Drive I\_Force

ACCx1000

SPEED I FORCEx10

DIRECTION

Beschleunigung (2-1'000'000'000 x1000 lnc/s²)

Kraftlimitierung (0-1'800 x10 mA)

Geschwindigkeit (10-100'000'000 Inc/s)

POSITIVE = Positive Richtung, NEGATIVE = Negative Richtung

#### **COMMANDS**

CLEAR = Drive I\_Force Nummer löschen EXECUTE = Führt den Drive I\_Force aus COPY TO DIFxx = Der Drive I\_Force wird in einen neuen Drive I\_Force kopiert

# 11.11 Drive Force (Forceteg® pro)

Ein DRIVE FORCE ist eine Fahrt auf Kraft, bestehend aus Beschleunigung (ACC), Geschwindigkeit (SPEED), Kraft (FORCE) und Fahrrichtung (DIRECTION).

Es können bis zu 10 DRIVE FORCE gespeichert werden.

#### NEW

Neuer Drive Force erstellen

#### **Parameter vom Drive Force**

ACCx1000 SPEED

FORCE

DIRECTION

# move axis by command the by command

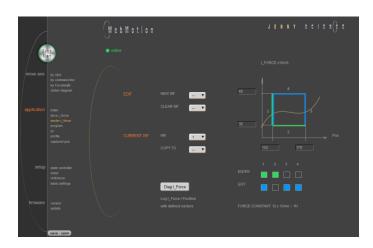
Beschleunigung (2-1'000'000'000 x1000 lnc/s²) Geschwindigkeit (10-100'000'000 lnc/s)

Kraftlimitierung (0-20'000 mN)

POSITIVE = Positive Richtung, NEGATIVE = Negative Richtung

#### **COMMANDS**

CLEAR = Drive Force Nummer löschen EXECUTE = Führt den Drive Force aus COPY TO DFxx = Der Drive Force wird in einen neuen Drive Force kopiert

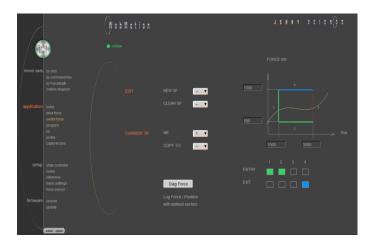



# 11.12 Sector I\_Force (Forceteq® basic)

Im WebMotion® Programmmenü "sector i-force" können bis zu 10 verschiedene Kraftsektoren definiert werden.

#### Beispiel:

Ab einer Berührungsposition soll der Kraftverlauf in einem Sektor von 150 bis 170 Inc. geprüft werden. Dabei soll beim "ENTRY" in den Sektor eine Kraft im Bereich von 3-4N vorhanden sein. Beim "EXIT" soll die Kraft 4N erreicht haben. Diese Definition erfolgt über Ein- und Austrittslinien des Kraftsektors.




# 11.13 Sector Force (Forceteq® pro)

Im WebMotion® Programmmenü "sector force" können bis zu 10 verschiedene Kraftsektoren definiert werden.

#### Beispiel:

Ab einer Berührungsposition soll der Kraftverlauf in einem Sektor von 1500 bis 3500 Inc. geprüft werden. Dabei soll beim "ENTRY" in den Sektor eine Kraft im Bereich von 0.5-1.5N vorhanden sein. Beim "EXIT" soll die Kraft 1.5N erreicht haben. Diese Definition erfolgt über Ein- und Austrittslinien des Kraftsektors.



Mehr Informationen zum Kraftprozess finden sie im Kapitel 14 Forceteq® Kraftmesstechnologie.

# 11.14 Program

Hier werden Programmabläufe Zeilenweise eingegeben.

#### **PROGRAM**

Auswahl, erstellen, kopieren oder löschen eines Programms

#### **LINES**

In der Liste sind alle definierten Programmschritte (lines) des aktuell gewählten Programms abgebildet. Die maximale Anzahl Zeilen ist abhängig vom Programm Mapping (PMAP, Standard = 0):

PMAP = 0 Prog 1-15: 50 Zeilen Prog 16-63: 10 Zeilen PMAP = 1 Prog 1-5: 130 Zeilen Prog 6-63: 10 Zeilen

#### **COMMANDS**

CLEAR = Löscht die Programm-Linie MOVE UP = Programm-Linie wird nach oben geschoben MOVE DN = Programm-Linie wird nach unten geschoben

#### **NEW LINE**

Eine neue Programm-Linie wird in der letzten Zeile eingefügt

#### **INSERT LINE**

Eine neue Programm-Linie wird in eine beliebige Zeile eingefügt. Die nachfolgenden Programm-Linien werden um eine Zeile geschoben.





# 11.14.1 Befehlssatz Program

| Beschreibung                                                                                                                                                                                                                                                                                                                                                                     | Befehl                              | Parameter  | Master<br>/ Slave |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|-------------------|
| Referenzierung für LINAX®/ELAX®/ ROTAX® und Third<br>party Motoren                                                                                                                                                                                                                                                                                                               | REFERENCE                           |            | MS                |
| Index Nr. xx fahren oder verstellen gemäss Operation yy um Distanz zz ACTION "EXE": Index Nr. xx fahren und nach COMPLETION zz % des Indexes den nächsten Befehl ausführen ACTION "=": Distanz des Index auf zz verstellen ACTION "+": Distanz des Index um zz vergrössern ACTION "-": Distanz des Index um zz verkleinern ACTION "POS": Distanz des Index auf aktuelle Position | INDEX                               | xx, yy, zz | MS                |
| des Schlittens stellen                                                                                                                                                                                                                                                                                                                                                           |                                     |            |                   |
| Setzen Output Nr. xx                                                                                                                                                                                                                                                                                                                                                             | SET OUTPUT                          | XX         | MS                |
| Löschen Output Nr. xx                                                                                                                                                                                                                                                                                                                                                            | CLEAR OUTPUT                        | XX         | MS                |
| Sprung auf Zeile Nr. xx                                                                                                                                                                                                                                                                                                                                                          | GOTO LINE                           | XX         |                   |
| Sprung auf Zeile Nr. xx, falls Input Nr. yy aktiv                                                                                                                                                                                                                                                                                                                                | GOTO LINE IF INPUT                  | хх, уу     |                   |
| Setze Loop Counter # auf xxxx (1-10000)                                                                                                                                                                                                                                                                                                                                          | SET LOOP COUNTER (A-E)              | XXXX       |                   |
| Decr. Loop Counter #, falls nicht null, Sprung auf                                                                                                                                                                                                                                                                                                                               | DEC LOOP COUNT (A-E) JNZ LINE       | XX         |                   |
| Zeile xx. Loop Counter sind verschachtelbar<br>Warten xx ms (in 10ms Auflösung)                                                                                                                                                                                                                                                                                                  | WAIT TIME (ms)                      | XX         |                   |
| Warten auf High Input Nr. xx innerhalb Timeout Zeit yy                                                                                                                                                                                                                                                                                                                           | WAIT TIME (IIIS) WAIT INPUT NR HIGH | xx, yy, zz | MS                |
| sonst Sprung auf Zeile zz "Fehlerbehandlung" (Timoutfunktion nur lokal verwendbar, nicht remotefähig)                                                                                                                                                                                                                                                                            | WALLINGTON                          | AA, yy, 22 | 1413              |
| Warten auf Low Input Nr. xx innerhalb Timeout Zeit yy<br>sonst Sprung auf Zeile zz "Fehlerbehandlung"<br>(Timoutfunktion nur lokal verwendbar, nicht<br>remotefähig)                                                                                                                                                                                                             | WAIT INPUT NR LOW                   | xx, yy, zz | MS                |
| Positionszähler auf 0 setzen, (bei LINAX® / ELAX® nicht möglich, bei ROTAX® nur möglich, wenn dieser nicht referenziert ist)                                                                                                                                                                                                                                                     | CLEAR POSITION                      |            |                   |
| Profile Nr. xx starten                                                                                                                                                                                                                                                                                                                                                           | PROFILE                             | xx         | MS                |
| Prozesstimer starten<br>Prozesstimer stoppen<br>Befehl TPT (Tell Process Timer) liefert die gemessene<br>Zeit in Millisekunden                                                                                                                                                                                                                                                   | TIMER START<br>TIMER STOP           |            |                   |
| LINAX®/ELAX® fährt auf mechanisch limitierte Position, siehe auch setup / reference.                                                                                                                                                                                                                                                                                             | REF LIMIT STOP                      |            |                   |
| Force Calibration ausführen, Start Pos xx, End Pos yy                                                                                                                                                                                                                                                                                                                            | FORCE CALIBRATION                   | хх, уу     |                   |
| Automatische I_Force Drift Compensation Fahrt<br>xx = POS => Fahrt in positive Richtung<br>xx = NEG => Fahrt in negative Richtung                                                                                                                                                                                                                                                | I_FORCE DRIFT COMPENSATION          | xx         |                   |
| DRIVE I_FORCE Nr. xx fahren (Forceteq® basic)                                                                                                                                                                                                                                                                                                                                    | DRIVE I_FORCE                       | xx         |                   |
| DRIVE FORCE Nr. xx fahren (Forceteg® pro)                                                                                                                                                                                                                                                                                                                                        | DRIVE FORCE                         | xx         |                   |
| Auswahl der Sektoren die aktiv sein sollen mit Bit Maske z.B. xx = 1010-> aktiv sind Sektoren 2,4 LSB ist rechts                                                                                                                                                                                                                                                                 | SELECT SECTORS                      | xx         |                   |
| Warten bis Limit I_FORCE erreicht, gemäss Parameter DRIVE I_FORCE innerhalb Timeout Zeit xx, sonst Sprung auf Zeile yy "Fehlerbehandlung" (Forceteq® basic)                                                                                                                                                                                                                      | WAIT LIMIT I_FORCE                  | хх, уу     |                   |



| Warten bis Limit FORCE erreicht, gemäss Parameter DRIVE FORCE innerhalb Timeout Zeit xx, sonst Sprung auf Zeile yy "Fehlerbehandlung" (Forceteq® pro)                                                                                                                                               | WAIT LIMIT FORCE              | хх, уу     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|
| Warten bis Distanz (Absolutposition – Sector Offset) grösser als xx innerhalb Timeout Zeit yy, sonst Sprung auf Zeile zz "Fehlerbehandlung"                                                                                                                                                         | WAIT FOR DISTANCE GREATER     | xx, yy, zz |
| Warten bis Distanz (Absolutposition – Sector Offset)<br>kleiner als xx innerhalb Timeout Zeit yy, sonst Sprung<br>auf Zeile zz "Fehlerbehandlung"                                                                                                                                                   | WAIT FOR DISTANCE LESS        | xx, yy, zz |
| Warten auf Prozess Status Register Bit xx High innerhalb<br>Timeout Zeit yy, sonst Sprung auf Zeile zz<br>"Fehlerbehandlung"                                                                                                                                                                        | WAIT PROCESS STATUS BIT HIGH  | xx, yy, zz |
| Warten auf Prozess Status Register Bit xx Low innerhalb<br>Timeout Zeit yy, sonst Sprung auf Zeile zz<br>"Fehlerbehandlung"                                                                                                                                                                         | WAIT PROCESS STATUS BIT LOW   | xx, yy, zz |
| Nimmt die aktuelle IST-Position als Offset für alle<br>Sektoren mit Neustart der Überwachung.<br>Weiter werden auch die Positionen "Wait for distance<br>greater/less" und "Jump if distance greater/less" um<br>diesen Offset geschoben.                                                           | TAKE POS AS SECTOR OFFSET     |            |
| Vorgeben des Offsets für alle Sektoren mit Neustart der Überwachung.  xx = [Inc] Offset  Weiter werden auch die Positionen "Wait for distance greater/less" und "Jump if distance greater/less" um diesen Offset xx geschoben.  z.B. xx = 0, setzt den Offset inkl. TAKE POS AS SECTOR OFFSET auf 0 | SET SECTOR OFFSET             | xx         |
| Ändern Limit DR_I_FORCE auf xx x 10mA<br>Wert I_FORCE überschreibt den aktuellen Parameter<br>I_Force in DRIVE I_FORCE, bis DRIVE I_FORCE END<br>(Forceteq® basic)                                                                                                                                  | CHANGE LIMIT I_FORCE          | xx         |
| Ändern Limit DR_FORCE auf xx mN<br>Wert FORCE überschreibt den aktuellen Parameter<br>Force in DRIVE FORCE, bis DRIVE FORCE END<br>(Forceteq® pro)                                                                                                                                                  | CHANGE LIMIT FORCE            | xx         |
| Sprung auf Zeile zz falls Distanz xx<br>(Absolutposition – Sector Offset) grösser<br>z.B. zu weit gefahren nach Kraft erreicht                                                                                                                                                                      | JUMP IF DISTANCE GREATER      | XX, ZZ     |
| Sprung auf Zeile zz falls Distanz xx<br>(Absolutposition – Sector Offset) kleiner<br>z.B. zu wenig weit gefahren, nach Kraft erreicht                                                                                                                                                               | JUMP IF DISTANCE LESS         | XX, ZZ     |
| Sprung auf Zeile xx "Fehlerbehandlung" falls ein oder<br>mehrere Sektoren nicht korrekt durchlaufen, dabei<br>werden alle aktiven Sektoren geprüft. Achtung vor<br>dieser Auswertung muss "DRIVE I_FORCE END"<br>ausgeführt sein. (Forceteq® basic)                                                 | JUMP IF I_FORCE SECTORS FAULT | xx         |
| Sprung auf Zeile xx "Fehlerbehandlung" falls ein oder<br>mehrere Sektoren nicht korrekt durchlaufen, dabei<br>werden alle aktiven Sektoren geprüft. Achtung vor<br>dieser Auswertung muss "DRIVE FORCE END"<br>ausgeführt sein. (Forceteg® pro)                                                     | JUMP IF FORCE SECTORS FAULT   | xx         |
| Drive I_Force beenden, aktuelle Position = Sollposition, Parameter LIMIT DR_I_FORCE inaktiv (Forceteq® basic)                                                                                                                                                                                       | DRIVE I_FORCE END             |            |



Drive Force beenden, aktuelle Position = Sollposition,
Parameter LIMIT DR\_FORCE inaktiv (Forceteq® pro)
Endstufe stromlos, Achse lässt sich frei bewegen
Einschalten der Endstufe mit Übernahme der Absolut
Position ohne dass eine Referenzierung durchgeführt
wird. z.B. nach Fehler 50 oder nach Power Quit. Dies ist
möglich solange die Logikspeisung seit der letzten
Referenzierung nicht mehr unterbrochen wurde.
Programm wird hier beendet und läuft nicht bis zur
letzten Zeile, vorteilhaft bei "Fehlerbehandlung"

**DRIVE FORCE END** 

POWER QUIT MS
POWER CONTINUE MS

**PROGRAM END** 

#### Hinweise:

Die Eingaben unter application / program sind anschliessend mit "save" in den Servocontroller zu speichern, um sie zu aktivieren.

MS: Master/Slave Funktion, kann auf einem anderen Gerät gestartet werden. LOC = Lokal, ID1..4 = Gerät mit entsprechendem Card Identifier (CI)

#### Beispiel: Initialisierung LINAX®/ELAX®

Das Beispielprogramm zeigt die Initialisierung eines LINAX®/ELAX® Linearmotors durch den Befehl REFERENCE (Referenzierung) mit anschliessender Fahrt auf eine definierte Startposition (INDEX 1).

Die Startposition ist innerhalb der Hublänge frei wählbar. Im gezeigten Beispiel fährt die Achse auf die Startposition 0.

#### Wichtig:

Der Befehl REFERENCE muss nach dem Einschalten des Servocontrollers einmal ausgeführt werden. Erst danach sind Fahrbefehle möglich.

# Beispiel: Initialisierung ROTAX® oder Third party Motor

Die Referenz Funktion kann im Menu setup / reference definiert werden (siehe Kapitel 11.20.3 Referenz ROTAX® und Third Party Motoren). Durch diese Funktion fährt der Motor auf einen Referenzschalter (Grob null) und anschliessend auf die Encoder Z-Marke.

Eine von der Referenzposition abweichende Startposition kann durch einen Index (INDEX 1) angefahren werden.

Der Programmstart erfolgt durch das ASCII Kommando PG1 im Menu *move axis / by command line* oder durch die Aktivierung einer Input Funktion "PG1".

# PROGRAM NEW \_\_ NUMBER 1 T COPYTO \_\_ T CLEAR \_\_ T LINES MISLAVE COMMANDS 1 REFERENCE T LOCAL T LOCA





# 11.15 I/O Functions



#### **OUTPUT FUNCTIONS**

Zuweisen der Ausgangsfunktionen gemäss Output Functions. ON und OFF der Outputs per Mausklick.

#### INPUT FUNCTIONS

Zuweisen der Eingangsfunktionen gemäss Input Functions. Wahl von High- oder Low-aktiven Eingängen. Input 9-12 binär codiert.

In der Operations-Übersicht befindet sich die Anzeige der physikalischen Zustände der Ein- und Ausgänge.



#### 11.15.1 Auswahl Input Funktionen

LINAX®: Referenzierung für LINAX®, Abstand von 2 Referenzmarken abfahren und errechnen der Absolut-

Position gemäss LINAX® Motoren.

**ELAX®:** Referenzierung für ELAX®, die Absolut Position wird durch eine Fahrt auf einen mechanischen Anschlag bestimmt.

ROTAX® und Third party Motoren: Referenzierung ausführen gem. REFERENCE für ROTAX® und Third party Motoren.

Index Nr. xx abfahren oder verstellen gemäss Operation yy

um Distanz zz

Output xx löschen

**INDEX** 

**REFERENCE** 

xx, yy, zz

Programm xx ausführen **PROGRAM** 

> Output xx setzen **SET OUTPUT**

> > **CLEAR OUTPUT**

JOG POSITIVE

XX XXXXX

XX

XX

Fahre positiv (konst. Geschwindigkeit. xxxxx Inc/sec)

solange Input # ansteht

JOG NEGATIVE

STOP IMPULS

XXXXX

Fahre negativ (konst. Geschwindigkeit. xxxxxx Inc/sec) solange Input # ansteht

Capture Position, Position erfassen auf Flankensignal am **CAPTURE POSITION** 

Input

Interrupt Programm, solange Input aktiv INTERRUPT PROGRAM

Stop Impuls, Flanken getriggert \*)

Verhält sich bei einem angeschlossenen LINAX®

Linearmotor gleich wie "STOP IMPULS COUNTER"

STOP IMPULS COUNTER

Stop Impuls Counter, wie STOP IMPULS aber setzt den Positionscounter nicht auf 0 \*)

Endschalter negativ (Limit-switch negativ) \*) LIMIT SWITCH NEGATIVE

Endschalter positiv (Limit-switch positiv) \*)

LIMIT SWITCH POSITIVE

Emergency Exit mit Power Off\*)

**EMERGENCY EXIT** 

Emergency Exit mit Power On, Position halten\*) (Funktion nur ohne Busmodul verwendbar. Mit Busmodul, Funktion "EMERGENCY EXIT" anwenden) **EMERGENCY EXIT POWER ON** 

Power ON continue, Zähler übernehmen **POWER CONTINUE** 

> Profil Nr. xx starten **PROFILE**

Reference Limit Stop, siehe auch

menu setup / reference

REFERENCE LIMIT STOP

Geschwindigkeit und Beschleunigung werden um xx

**OVERRIDE** 

XX

XX

Prozent verlangsamt

Drive I\_Force Nr. xx abfahren (Forceteq® basic)

Aktives Programm abbrechen und verlassen

**PROGRAM EXIT** 

DRIVE I\_FORCE

XX

Drive Force Nr. xx abfahren (Forceteq® pro)

**DRIVE FORCE** 

XX

Endstufe stromlos, Achse lässt sich frei bewegen

**POWER QUIT** 

\*)Stop mit ED

(Emergency Deceleration) Bremsrampe



#### Hinweise zu Input Funktionen:

Mit Ausnahme von "EMERGENCY EXIT" UND "EMERGENCY EXIT POWER ON" dürfen alle Input Funktionen nur in einem Pick & Place Master oder Gantry Master parametriert werden.

Für eine rasche Verzögerung in Not aus Situationen ("LIMIT SWITCH NEGATIVE", "LIMIT SWITCH POSITIVE", "EMERGENCY EXIT", "EMERGENCY EXIT POWER ON", "STOP IMPULS", "STOP IMPULS COUNTER") kann der spezielle ED (Emergency Deceleration) Wert parametriert werden (BEFEHL > ED xxxxx).

Die Emergency Exit-Funktionen haben höchste Priorität und werden immer sofort ausgeführt. Solange "EMERGENCY EXIT" ansteht kann keine andere Funktion ausgeführt werden.

Bei den anderen Funktionen wird eine bereits aktive Funktion immer zuerst fertiggestellt bevor die nächste ausgeführt wird. Stehen mehrere Funktionsaufrufe gleichzeitig an, so wird zuerst diejenige mit der tiefsten Input Nummer abgearbeitet.

Um ein Programm endlos laufen zu lassen lässt man einfach den zugewiesenen Input anstehen. Mit Interrupt Programm kann das laufende Programm unterbrochen werden. Wird IP inaktiv, so wird das unterbrochene Programm fortgesetzt.

Mit "STOP IMPULS COUNTER" wird die laufende Bewegung gestoppt und abgebrochen. Anschliessend kann auch bei anstehendem Stop Impuls ein neuer Fahrbefehl ausgeführt werden ("STOP IMPULS COUNTER" aktiv).



#### 11.15.2 Auswahl Output Functions

REFERENCE ist ausgeführt worden

In Motion, Motor fährt

IN MOTION **END OF PROGRAM** 

Trigger (5ms, Vorgabe TGU, TGD Befehle)

**TRIGGER** 

REFERENCE

Error anstehend

End of program

**ERROR** 

Bremse lösen

**BRAKE** 

In Position, innerhalb Zielfenster (Befehl DTP) IN POSITION

Limit I\_Force erreicht (Befehl LIF) (Forceteq® basic)

I FORCE MAX LIMIT

Limit Force erreicht (Befehl LF) (Forceteq® pro)

**FORCE MAX LIMIT** 

I Force In Sector, nach Abschluss der Fahrt (Forceteq® basic)

**IFORCE IN SECTOR** 

Force In Sector, nach Abschluss der Fahrt (Forceteg® pro)

FORCE IN SECTOR

In Sector (während und nach der Fahrt)

IN SECTOR

In Force (während und nach der Fahrt)

IN FORCE WARNING

Warnung anstehend

Information anstehend

STO Feedback 1

**INFORMATION** 

STO Feedback 2

STO1\* STO2\*

SS1 Feedback 1

SS11\*

SS1 Feedback 2

SS12\*

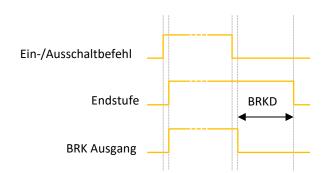
SS2 Feedback 1

SS21\*

SS2 Feedback 2 SLS Feedback 1

SS22\* SLS1\*

SLS Feedback 2


SLS2\*

### 11.15.3 Betrieb mit zusätzlicher Haltebremse

Eine zusätzliche Haltebremse für LINAX® Lxs und Lxu Motortypen kann mit dem XENAX® Servocontroller gesteuert werden. Die Ausgangsfunktion BRK (Brake) wird an einem Ausgang zugeteilt und im Zusammenhang mit der Definition der Parameter BRKD (Brake delay) betrieben.

Diese Funktion erlaubt die Aktivierung einer Zeitverzögerung beim Ausschalten der Endstufe. Zuerst wird das Steuersignal für die Bremse auf dem Low-Pegel gesetzt (Bremse ist aktiv) und nach BRKD Millisekunden (Einstellbereich zwischen 1 und 1000ms) wird dann die Endstufe ausgeschaltet.

Dieser Mechanismus erlaubt eine aktive Bremse mit eingeschalteter Endstufe und danach das kontrollierte ausschalten der Endstufe, wenn die Haltebremse schon gezogen ist. Die Zeitverzögerung wirkt nur beim Ausschalten.



<sup>\*</sup> Feedbacks sind Zustandsinformationen und keine SMU Sicherheitsfunktionen. Nur möglich mit optionaler SMU (Safety Motion Unit).



#### 11.16 Profile (Geschwindigkeit)

Komplexe Fahrprofile können durch Verkettung von bis zu sieben Profilsegmenten zusammen-gesetzt werden.

> Der XENAX® Servocontroller kann insgesamt fünf Profile speichern.

Die Profile werden durch eine Startposition und die absolute End-Position, End-Geschwindigkeit und Beschleunigung der Profilsegmente definiert. Aus diesen Angaben resultiert der Segmenttyp (Speed up, Slow down, constant speed). Mit dem Profile Check wird geprüft ob die eingegebenen Werte für den angeschlossenen Motor realisierbar sind.

Beim Start eines Profils ist sicherzustellen, dass sich der Motor an der vordefinierten Startposition befindet.

#### **EDIT**

NEW PROFILE = Neues Profil erstellen CLR PROFILE = Profil löschen

#### **CURRENT PROFILE**

Die Liste enthält alle bereits definierten Profile

#### **PARAMETERS**

Parametereinstellung des aktuellen Profile "CURRENT PROFILE"

Verrundung des Profile in Prozent. Automatische Berechnung

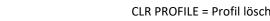
des dafür notwendigen Ruck-Parameters für jedes

Profilsegment.

Erstes Feld: Eingabe der absoluten Startposition

**POSITION** Endposition des entsprechenden Profilsegmentes

**SPEED** Geschwindigkeit an der Endposition des Profilsegmentes


ACCx1000 Beschleunigung innerhalb des Profilsegmentes

Die Parameter werden auf die Fahrbarkeit hin überprüft

(genügend Weg vorhanden, Speed erreichbar?) Korrekte Profilsegmente werden grün, ein fehlerhaftes

Segment rot und die ungeprüften Segmente

orange dargestellt.



S-CURVE **POSITION** 

**PROFILE CHECK** 

Die definierten und geprüften Profile sind unter "save" in den Servocontroller zu speichern.

Ein Profil lässt sich durch das Kommando PRFx starten wobei x die Profilnummer repräsentiert. Profile können auch als Input Funktion oder in einem Programm gestartet werden.

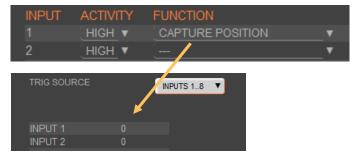


#### 11.17 Captured Pos

Der XENAX® Servocontroller bietet zwei Sonderfunktionen an um die aktuelle Position des Motors einzulesen.






#### Aufnahmefunktion der Ist-Position Input gesteuert

Sie können für alle digitalen Eingänge 1 – 8 eine Aufnahmefunktion mit CPOS im WebMotion® Menü I/O definieren.

Reaktionszeit > 4 ms.

(Input 1 = Pos Input 1 usw.)

ASCII Kommando: TCPn (n = Register Nummer)



#### Aufnahmefunktion der Ist Position Flanken gesteuert

Bei jeder steigenden Flanke am Input 12, wird die aktuelle Position des Motors in ein Pufferregister geschrieben. (Start ist Captured Pos 1).

Reaktionszeit Zeit ~ 4-6μs. (Erste Flanke Position = Captured Pos 1usw.) ASCII Kommando: TCPn (n = Register Nummer)

Funktion ist auch über die Jenny Science Busmodule im asynchronen betrieb verfügbar.



| Objekt | Sub Idx |                                  | ASCII       |
|--------|---------|----------------------------------|-------------|
| 5000h  | 0x5010  | CLCP Clear all Captured Position | CLCP        |
|        | 0x5015  | Captured Position Mode Input 12  | CP120       |
|        | 0x5016  | Captured Position Mode Input 18  | CP121       |
| 5003h  | 0x37    | Read Buffer Position (18)        | TCPn (n=18) |
|        | 0x38    | Return of value                  |             |

### 11.18 State Controller

Konsultieren Sie auch das TUTORIAL Video
Tutorial 2: Initial XENAX® Xvi state controller setup
auf unserer Webseite. In diesem Video sehen Sie die
Grundeinstellungen des XENAX® Xvi für den LinearmotorSchlitten von Jenny Science





Das Regelungssystem besteht aus einem Zustandsregler mit Achsbeobachter.

### **Basic Settings**

Diese Einstellungen erlauben eine einfache und übersichtliche Parametrierung der Achse für die meisten Einsatztaufgaben.

### **Basic PAYLOAD**

Angabe der zusätzlichen Last in g. Das Gewicht des leeren Motorschlittens wird automatisch durch die Motoridentifikation berücksichtigt.

Oder

**Basic INERTIA** (nur bei ROTAX® und Third Party Motoren)

Einstellen des externen Trägheitsmoments. Ist ein Getriebe zwischen Motor und Last reingesetzt, so ist das externe Trägheitsmoment entsprechend auf die Motorwelle umzurechnen. Dabei ist das Übersetzungsverhältnis quadratisch zu gewichten.

z.B. Übersetzung des Getriebes = 20:1. Das externe Trägheitsmoment ist um 400 zu reduzieren.

Bei Direktantrieben ist der Parameter-Wert für das Trägheitsmoment des externen Aufbaus (INERTIA) wichtig, sonst schwingt der Antrieb. Da ein Faktor 10<sup>-9</sup> eingerechnet ist, kann dieser Parameter sehr grosse Werte annehmen. In diesem Fall ist dieser in das Zahlenfeld rechts einzutragen.

Beispielrechnung: Der externe Aufbau ist eine homogene Scheibe mit 1.1kg Gewicht und Ø200mm.

Die Formel lautet:

Die Formel lautet:  

$$J = \frac{1}{2}m \cdot r^2 = 5.5 \cdot 10^{-3} \text{ kgm}^2$$

Skalierung mit 10<sup>9</sup> ergibt einen Parameterwert von 5'500'000.

(siehe XENAX® Servocontroller/Allgemeine Dateien zu XENAX® Xvi/PARAMETRIERUNG\_ROTATIV auf <a href="https://jennyscience.ch/de/produkte/download">https://jennyscience.ch/de/produkte/download</a>).

### **Basic GAIN POS**

Gesamtverstärkung des Positionsregelkreises. Mit zunehmender Last ist dieser Wert zu reduzieren. Vorschlag durch die Taste "Auto Gain".



### **Auto Gain**

Setzt die Gesamtverstärkung des Positionsregelkreises auf Grund der eingestellten Masse (Payload).

Dies ist ein theoretisch berechneter Wert. Eine geringfügige manuelle Nachstellung kann in der Praxis notwendig sein mittels der Bedienung "GAIN POS".

### **Noise GAIN CUR**

Verstärkung des Stromregelkreises. Die Reduktion dieser Verstärkung erlaubt eine Lärmreduktion in empfindlichen Umgebungen.

### **Deviation POS ACT**

Maximal zulässige Positionsabweichung in Inkrement des Encoders. Wird dieser Wert überschritten folgt Fehler 50, blinkt auf der 7-Segment Anzeige

### **Deviation TARGET**

Zulässige Positionsabweichung im Zielpunkt bis der Zustand "in Position" erkannt wird.

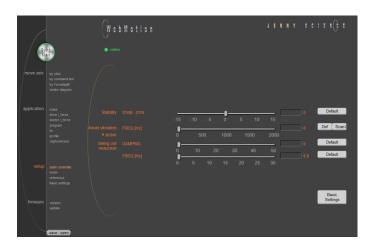
### **Default**

Standardeinstellung der verschiedenen Parameter.
Alle Parameter können manuell während der
Einstellung des Reglers verändert werden und mit der
Taste "Default" können auf den Standardwert
zurückgesetzt werden.

### **Advanced Settings**

Umschaltung der Einstellseite für eine erweiterte Parametrierung.

### **Advanced Einstellungen**


Diese Einstellungen erlauben eine erweiterte Parametrierung für komplexeren Anordnungen mit mechanischen Schwingungen.

### Stability STAB - DYN

Dieser Parameter ist standardmässig auf 0 gesetzt und erlaubt eine Veränderung der Reglereinstellung bezüglich Stabilität gegenüber externen Störungen in Form von Schwingungen.

Eine Verschiebung in positive Richtung kann für einfache mechanische Anordnungen mit leichten Massen eine zusätzliche Verbesserung in der Dynamik des Reglers bringen.

Eine Verschiebung in negative Richtung erlaubt eine Verminderung der Reaktion auf mechanische Schwingungen.





### **Avoid vibration FREQ**

Frequenz des Stromfilters. Das Filter eignet sich für die Reduktion von Schwingungen mit ausgeprägten Frequenzen. Typische Werte liegen zwischen 300-500Hz. Das Filter ist bei Frequenz 0 ausgeschaltet. Diese Frequenz kann automatisch mit einer internen Scan-Funktion (Siehe im Kapitel 11.18.1 F Setting) oder eventuell mit einem App auf einem Smartphone ermittelt werden.

Man hat 2 Typen von Filter zur Verfügung "active" und "notch" welche auf unterschiedlichen Frequenzen aktiv sein können. Der "active" ist zu bevorzugen, da dieser die Regelgüte wenig beeinflusst. Für Resonanzfrequenzen mit einem breiten Spektrum ist ein "notch"-Filter anzuwenden.

### Swing out reduction

Diese Funktionalität ermöglicht eine automatische Anpassung der Trajektorien Vorgabe, sodass die Ausschwingzeit nach dem Ende einer Fahrt vermindert werden kann.

Um diese Ausschwingzeit reduzieren zu können, sollen zwei Parameter identifiziert und eingegeben werden: Dämpfung und Frequenz der Schwingung. Die Einstellung eines der beiden Parameter auf O schaltet diese Funktionalität aus.

### **Hinweis:**

Die Umrechnung der Trajektorie kann nicht abrupt im Betrieb verändert werden. Nach Eingabe einer neuen Frequenz oder Dämpfung muss die Achse mindestens 1000ms stillstehen, bis die neuen Einstellungen übernommen werden

(vgl. Info 27 im Kapitel 16 Fehlerbehandlung).

### Achtung:

Bei zyklisch interpolierter Vorgabe der Trajektorie mit einer übergeordneten SPS muss man beachten, dass nur die interne Vorgabe im Kontroller modifiziert wird und die ursprüngliche Zielposition später erreicht wird. Die Erreichung der Zielposition muss mit zusätzlicher Beobachtung der Ist-Position sichergestellt werden bevor eine andere Fahrt gestartet wird.

### **Swing out reduction DAMPING**

Dieser Parameter erlaubt die Eingabe der Dämpfung der mechanischen Schwingung in % und ist von der Masse abhängig.

### Swing out reduction FREQ

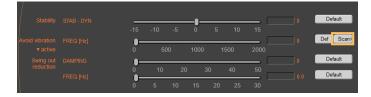
Dieser Parameter erlaubt die Eingabe der Frequenz der mechanischen Schwingung mit einer Auflösung von 0.1Hz. Diese Schwingungen weisen kleine Frequenzen auf (normalerweise unter 30Hz). Die kleinstmögliche Eingabefrequenz beträgt 2Hz.

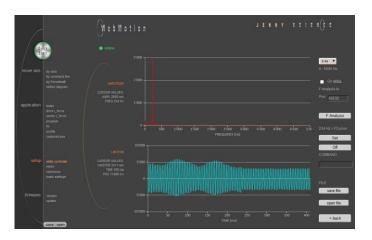
Diese Frequenz kann aus der "DEVIATION" Kurve im "Motion Diagram" entnommen werden, falls das Verhältnis der Masse gegenüber der Schlittenmasse genügend gross ist.

Ansonsten kann sie mit einer Hochgeschwindigkeitskamera, mit einem Beschleunigungssensor oder mit Hilfe einer Smartphone App für die Vibrationsmessung bestimmt werden.

### **Basic Settings**

Umschaltung auf die Parametrierung für die Grundeinstellung des Reglers.


### 11.18.1 F Setting


Die Bandbreite des Positionsreglers (GAIN POS) soll so hoch gewählt werden, dass die vorgegebenen Bewegungen innerhalb der maximal tolerierbaren Positionsabweichung ausgeführt werden können, der Motor aber noch nicht zu schwingen beginnt. In gewissen Aufbauten, speziell mit hohen Gewichten, kann es aber vorkommen, dass hier keine Einstellung gefunden werden kann, welche beide Kriterien erfüllt. Wenn der Motor mit der gewünschten Bandbreite des Positionsreglers auf Grund einer Resonanz im System zu schwingen beginnt, kann diese Schwingung aber unter Umständen mit Hilfe eines Filters unterdrückt werden.

Grundsätzlich muss unter den State Controller Basic Einstellungen im WebMotion® immer die korrekte PAYLOAD und das gewünschte GAIN POS eingestellt werden. Schwingt nun der Motor mit diesen Einstellungen, kann mit Hilfe der Frequenzanalysefunktion die Resonanzfrequenz bestimmt und gezielt unterdrückt werden.

Über den Knopf "Scan>" kann zur Frequenzanalyse gewechselt werden.

Im laufenden Betrieb kann jederzeit eine Frequenzanalyse gestartet werden. Die Endstufe muss dabei aber zwingend eingeschalten sein, da für die Frequenzanalyse der Motorstrom analysiert wird. Sobald die Analyse durchgeführt wurde, werden die Messresultate im WebMotion® angezeigt und die Filterfrequenz kann gesetzt werden.

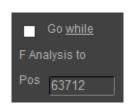






### Einstellungen für die Frequenzanalyse:

### Aufzeichnungszeit

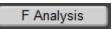

Je länger die Aufzeichnungszeit gewählt wird, desto höher ist die Frequenzauflösung aber auch umso kleiner ist der messbare Frequenzbereich. Zur gewählten Aufzeichnungszeit wird jeweils der zugehörige messbare Frequenzbereich angezeigt. Es soll also mit der minimalen Aufzeichnungszeit von 0.4s begonnen werden (also mit maximalem Frequenzbereich). Bei tiefen Resonanzfrequenzen kann dann allenfalls die Analyse mit erhöhter Aufzeichnungszeit und somit reduziertem Frequenzbereich wiederholt werden.

| 0.4s ▼ |                    |
|--------|--------------------|
| 0.4s   | 0.4s -> 0 – 5000Hz |
| 0.8s   | 0.8s -> 0 – 2500Hz |
| 1.6s   | 1.6s -> 0 – 1250Hz |
| 3.2s   | 3.2s -> 0 - 625Hz  |

### Go while F Analysis

Ausgeschalten:

Während der Frequenzanalyse wird keine Fahrt gestartet. Dies soll gewählt werden, wenn eine Analyse im Stillstand gewünscht wird, oder wenn bereits eine Fahrt aktiv ist (z.B. durch laufendes Programm oder vorgegebener Fahrt durch übergeordnete Steuerung)




### Eingeschalten:

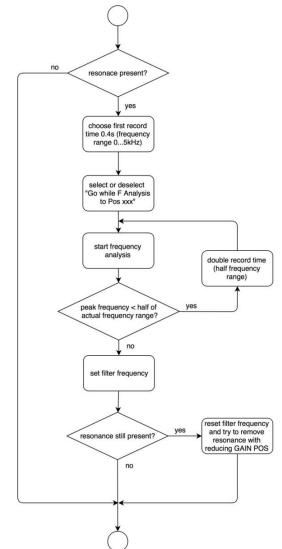
Während der Frequenzanalyse wird eine Fahrt auf die eingegebene Position innerhalb der gewählten Aufzeichnungszeit gestartet.

### **F** Analysis

Startet die Frequenzanalyse (und die Fahrt, falls "Go while F Analysis" eingeschalten ist).



### Set


Liegt der Cursor im einstellbaren
Filterfrequenzbereich (Notch: 160...2000Hz, Active:
200...2000Hz), so kann die Filterfrequenz durch
Drücken des Knopfes "Set" direkt auf die
Cursorfrequenz eingestellt werden.
Direkt nach der Frequenzanalyse steht der Cursor
immer auf der Frequenz mit der maximalen
Amplitude innerhalb des einstellbaren
Filterfrequenzbereichs und somit vermutlich auf der
Resonanzfrequenz. Der Cursor kann aber jederzeit
bewegt werden um eine andere Filterfrequenz
einzustellen.



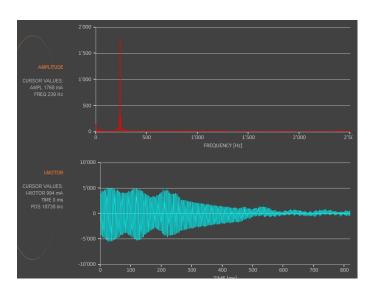
Soll der Filter ausgeschalten werden, so kann der Knopf "Off" gedrückt werden.

### Ablauf einer Frequenzanalyse:

Nebenstehend ist ein typischer Ablauf einer Frequenzanalyse aufgezeigt:



### Hinweise zur Frequenzanalyse:


- Das setzten der Filterfrequenz führt nicht immer zwingend zum Verschwinden der Schwingung. Speziell bei tiefen Resonanzfrequenzen kann es sein, dass der Regler durch das Setzten der Filterfrequenz zu stark beeinträchtigt wird und die Schwingung nicht verschwindet. In diesen Fällen hilft nur das Reduzieren des GAIN POS, bis die Schwingung verschwindet.
- Treten mehrere Resonanzfrequenzen auf, so kann versucht werden, die Filterfrequenz ungefähr in die Mitte der Resonanzfrequenzen zu legen.
- Auf der Frequenz 0 wird der mittlere Strom während der Frequenzanalyse dargestellt. Dieser entspricht dem DC-Anteil des Motorstroms und ist oftmals nicht 0.

### **Diagramm Amplitude**

In diesem Diagramm werden die Amplituden aller im Motorstrom vorhandenen Frequenzen dargestellt. Die Amplitude und Frequenz an der Cursorposition werden links vom Diagramm dargestellt.

### **Diagramm I-Motor**

In diesem Diagramm wird der für die Frequenzanalyse aufgezeichnete Motorstrom dargestellt. Der Motorstrom und die Aufzeichnungszeit an der Cursorposition werden links vom Diagramm dargestellt. Ausserdem wird zusätzlich noch dargestellt, an welcher Position sich der Schlitten zur entsprechenden Aufzeichnungszeit befunden hat.





### 11.19 Motor

### 11.19.1 Motoren LINAX® und ELAX®

### **MOTOR TYPE**

Der angeschlossene Motortyp der LINAX® und ELAX® Baureihe wird automatisch erkannt und angezeigt.

### **I STOP**

Limitierung des Dauerstromes bei Positionierung im Stillstand.

### I RUN

Limitierung des Spitzenstromes während der Fahrt.

### **NUMBER OF POLE PAIRS**

LINAX® Lx und ELAX® Ex Linearachse Polpaarzahl = 1

### **INC PER REVOLUTION**

Anzahl Inkremente pro Umdrehung.

Linear Achse:

Lx 44F04, INC PER REVOL = 12'000Alle anderen LINAX® Produkte Lxc, Lxe, Lxu, Lxs, INC PER REVOL = 24'000ELAX®, INC PER REVOL = 14'171

### **PHASE DIRECTION**

Drehrichtung der Phasenansteuerung U, V, W oder V, U, W, je nach Motortyp LINAX® / ELAX® Linearmotor-Achse PHASE DIR = 0

### **PHASE OFFSET**

Korrektur des elektrischen Winkels nach der Ausrichtung der Spule zu den Magneten. Bei allen LINAX® und ELAX® Produkten und den meisten rotativen Motoren PHASE OFFSET = 0





### 11.19.2 Motor ROTAX®

### **MOTOR TYPE**

Der angeschlossene Motortyp der ROTAX® Baureihe wird automatisch erkannt und angezeigt.

### **I STOP**

Limitierung des Dauerstromes bei Positionierung im Stillstand.

### **I RUN**

Limitierung des Spitzenstromes während der Fahrt.

### **NUMBER OF POLE PAIRS**

Zeigt Anzahl Polpaare des AC / DC / EC bürstenlosen Servomotors. Für bürstenbehaftete DC Servomotoren POLE PAIRS auf 0 setzen.

### **INC PER REVOLUTION**

Anzahl Inkremente pro Umdrehung bei bürstenlosen AC / DC / EC Servomotoren. Wird bei bürstenbehafteten DC Servomotoren nicht verwendet.

### **PHASE DIRECTION**

Drehrichtung der Phasenansteuerung U, V, W oder V, U, W, je nach Motortyp. Kann mit Befehl PHDD ermittelt werden.

Für bürstenbehaftete DC Servomotoren: PHASE DIR = 0, wenn Motorachse bei direkter Speisung des

Motors im Uhrzeigersinn dreht.

PHASE DIR = 1, wenn Motorachse bei direkter Speisung des Motors im Gegenuhrzeigersinn dreht.

### **PHASE OFFSET**

Korrektur des elektrischen Winkels nach der Ausrichtung der Spule zu den Magneten. Bei den meisten rotativen Motoren PHASE OFFSET = 0

### **ROTOR INERTIA**

Rotorträgheitsmoment des Motors, mit Faktor 109.

### **TORQUE CONST**

Drehmomentkonstante des Motors, mit Faktor 10<sup>6</sup>.

### **INDUCTANCE**

Induktivität Phase zu Phase des Motors.

### RESISTANCE

Widerstand Phase-Phase vom Motor.

# ## St. | ##



### 11.19.3 Third Party Motoren

### THIRD PARTY MOTOR

Von Jenny Science vertriebene Motoren werden, sind in der Motordatenbank vorhanden und können angewählt werden.

Ist der Motor nicht in der Datenbank vorhanden, erfolgt die Parametrierung des rotativen Motors gemäss Dokument XENAX® Servocontroller/Allgemeine Dateien zu XENAX® Xvi/PARAMETRIERUNG\_ROTATIV auf

https://jennyscience.ch/de/produkte/download.

### I NOM (FOR I2T)

Thermisch zulässiger Dauerstrom. Verwendet für I<sup>2</sup>T Überwachung und Stromlimitierung während des Stillstands.

### I PEAK

Limitierung des Spitzenstromes während der Fahrt.

### **NUMBER OF POLE PAIRS**

Zeigt Anzahl Polpaare des AC / DC / EC bürstenlosen Servomotors. Für bürstenbehaftete DC Servomotoren POLE PAIRS auf 0 setzen.

### **INC PER REVOLUTION**

Anzahl Inkremente pro Umdrehung bei bürstenlosen AC / DC / EC Servomotoren. Wird bei bürstenbehafteten DC Servomotoren nicht verwendet.

### **PHASE DIRECTION**

Drehrichtung der Phasenansteuerung U, V, W oder V, U, W, je nach Motortyp. Kann mit Befehl PHDD ermittelt werden.
Für bürstenbehaftete DC Servomotoren:
PHASE DIR = 0, wenn Motorachse bei direkter Speisung des
Motors im Uhrzeigersinn dreht.
PHASE DIR = 1, wenn Motorachse bei direkter Speisung des
Motors im Gegenuhrzeigersinn dreht.

### **PHASE OFFSET**

Korrektur des elektrischen Winkels nach der Ausrichtung der Spule zu den Magneten. Bei den meisten rotativen Motoren PHASE OFFSET = 0

### **ROTOR INERTIA**

Rotorträgheitsmoment des Motors, mit Faktor 109.

### **TORQUE CONST**

Drehmomentkonstante des Motors, mit Faktor 10<sup>6</sup>.

### **INDUCTANCE**

Induktivität Phase zu Phase des Motors.

### **RESISTANCE**

Widerstand Phase-Phase vom Motor.





### 11.19.4 Überlauf der Position

Für ROTAX® Motortypen und Third Party rotative Motoren, welche z.B. als Antriebe für Rundtische eingesetzt sind, die immer in der gleichen Richtung drehen, kann es vorkommen, dass die Encoderposition sehr hohe Werte entweder positiv oder negativ erreicht.

Um sicher zu stellen, dass diese Position kontinuierlich positiv oder negativ inkrementiert werden kann, ist im XENAX® Controller einen kontrollierten Überlauf-Mechanismus integriert.

Die maximal Positionswerte entsprechen  $2^{31}$ -1 = 2'147'483'647 inc in positiver Richtung und  $-2^{31}$  = -2'147'483'648 inc in negativer Richtung. Der Überlauf findet zwischen diesen zwei Werten statt.

2'147'483'647 <> -2'147'483'648

Beispiel: Überlauf positiv

Aktuelle Position: 2'147'483'646 inc Relative Bewegung: 10 inc

Fahrt:

Startposition: 2'147'483'646 inc

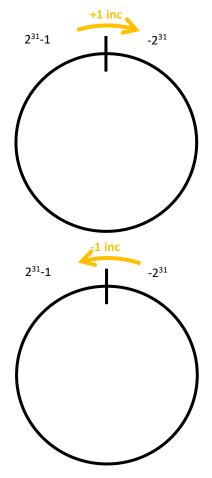
2'147'483'647 inc

-2'147'483'648 inc -2'147'483'647 inc

Zielposition: -2'147'483'640 inc

Beispiel: Überlauf negativ

Aktuelle Position: -2'147'483'648 inc


Relative Bewegung: -20 inc

Fahrt:

Startposition: -2'147'483'648 inc

2'147'483'647 inc

Zielposition: 2'147'483'629 inc





### 11.20 Referenzieren

### 11.20.1 Referenz LINAX®

## 11.20.1.1 Absolute Referenz, gemäss Referenzmarken

### Auswahl REFERENCE

Default, Referenzfahrt über 2 Referenzmarken auf dem Massstab mit Berechnung der Absolutposition. Diese Absolutposition bezieht sich auf den mechanischen Nullpunkt der LINAX® Linearmotorachsen.



### **DIRECTION**

Eingabe der Startrichtung bei der Referenzfahrt.

POSITIVE (DEFAULT) = Referenzfahrt nach oben, vom absoluten Nullpunkt in positive

Richtung.

NEGATIVE = Referenzfahrt nach unten, in

Richtung des absoluten Nullpunktes.

GANTRY => POS = Motoren gleichsinnig, Richtung vorwärts.

GANTRY => NEG = Motoren gleichsinnig, Richtung

rückwärts.

GANTRY<=>POS = Motoren gegensinnig, Richtung vorwärts.

GANTRY<=>NEG = Motoren gegensinnig, Richtung rückwärts.



### 11.20.2 Referenz ELAX®

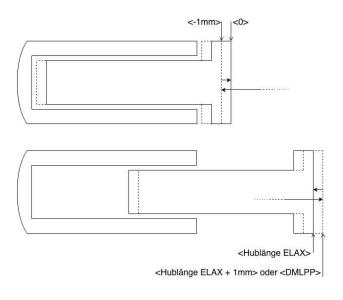
Der ELAX® verfügt über keine Z-Marken auf dem Massstab.

Die Absolut Position wird durch eine Fahrt auf einen mechanischen Anschlag bestimmt. Die Richtung der Referenzfahrt kann sowohl positiv wie auch negativ gewählt werden (siehe ASCII Befehl "DRHR").



### 11.20.2.1 Referenzfahrt mit internem Anschlag:

Sind keine externen Anschläge montiert ("MLPN" = 0 und "MLPP" = 0), so erfolgt die Referenzfahrt (REF) auf einen der internen Anschläge des ELAX® selbst.


ASCII Kommando "MLPN"= Mechanical Limit Position Negative ASCII Kommando "MLPP"= Mechanical Limit Position Positive

### Negative Referenzfahrt (DRHR=1)

Der Schlitten fährt in negativer Richtung, bis der Anschlag erkannt wird. Diese Position wird dann per Definition auf den Wert <-1mm> gesetzt. Zum Abschluss der Referenzfahrt fährt der Schlitten auf die Absolut Position 0. ASCII Kommando "DRHR"= Direction REF

### Positive Referenzfahrt (DRHR=0)

Der Schlitten fährt in positiver Richtung, bis der Anschlag erkannt wird. Wurde eine Kalibration (MLC, Mechanical Limit Calibration) des internen mechanischen Anschlags positiv gemacht, so wird die aktuelle Position auf den Wert "DMLPP" gesetzt. Wurde keine Kalibration des internen mechanischen Anschlags positiv gemacht ("DMLPP" = 0), so wird die aktuelle Position per Definition auf den Wert <Hublänge ELAX + 1mm> gesetzt. Zum Abschluss der Referenzfahrt fährt der Schlitten auf die Absolut Position <Hublänge ELAX>.

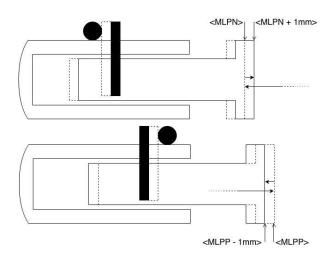


### 11.20.2.2 Referenzfahrt mit externem Anschlag

Sind externe Anschläge montiert (MLPN ≠ 0 oder MLPP ≠ 0), so erfolgt die Referenzfahrt (REF) auf einen der extern montierten Anschläge.

> ASCII Kommando "MLPN"= Mechanical Limit Position Negative ASCII Kommando "MLPP"= Mechanical Limit Position Positive

### **Negative Referenzfahrt:**


Der Schlitten fährt in negativer Richtung, bis der Anschlag erkannt wird. Diese Position wird dann auf den Wert "MLPN" gesetzt. Zum Abschluss der Referenzfahrt fährt der Schlitten auf die Absolut Position <MLPN +1mm>.

### Positive Referenzfahrt:

Der Schlitten fährt in positiver Richtung, bis der Anschlag erkannt wird. Diese Position wird dann auf den Wert "MLPP" gesetzt. Zum Abschluss der Referenzfahrt fährt der Schlitten auf die Absolut Position <MLPP - 1mm>.

### **Wichtiger Hinweis:**

Die Position eines extern angebrachten Anschlags muss genau bekannt sein. Bei falscher Angabe der Position des externen Anschlags kann die Ausrichtung der Spulen zu den Magneten nicht korrekt erfolgen und der Motor ist nicht lauffähig. Wird der ELAX-Schlitten bis an seinen internen negativen Anschlag eingefahren, steht dieser per Definition an der Position <-1mm>. Die Position eines externen Anschlags muss darauf bezogen angegeben werden.





### 11.20.3 Referenz ROTAX® und Third Party Motoren

Nur für ROTAX® und Third Party Motoren. Für LINAX® oder ELAX® direkt den Befehl ">REF" verwenden.

**CLOCKWISE** -> Uhrzeigersinn **COUNTER CLOCKWISE** -> gegen den Uhrzeigersinn

### **REF DIR**

Drehrichtung zum Suchen des externen REF Sensors 1 = CLOCKWISE, 2 = COUNTER CLOCKWISE

### **REF SPEED**

Geschwindigkeit zum Suchen des externen REF Sensors. Falls kein REF Sensor vorhanden, dann auf 0 setzen.

### **REF INPUT**

REF Sensor extern, Input Nummer (NONE oder 1-8)

### **Z-MARK DIR**

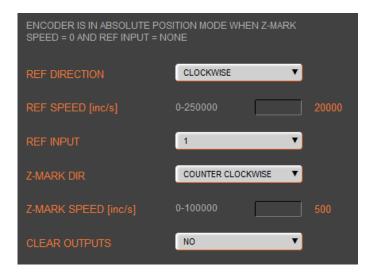
Drehrichtung zum Suchen der Z-Marke auf dem Encoder 1 = CLOCKWISE, 2 = COUNTER CLOCKWISE oder 3 = ON SHORTEST WAY (kürzester Weg, nur bei ROTAX® Rxvp möglich)

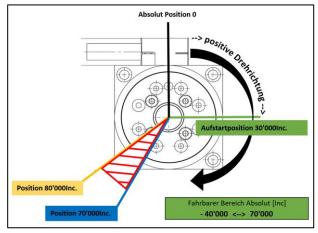
### **Z-MARK SPEED**

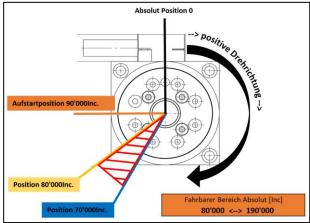
Geschwindigkeit zum Suchen der Z-Marke. Falls keine Z Marke (Referenzmarke) vorhanden, dann auf O setzen

### **CLEAR OUTPUTS**

Alle Outputs auf OFF nach Referenzierung.


### Hinweis für ROTAX® Rxhq:


Durch die Absolutposition ist der ROTAX® Rxhq nach dem Einschalten umgehend Betriebsbereit, eine Referenzfahrt ist nicht notwendig.


Dafür ist die Z-MARK DIR auf 0 und der REF INPUT auf NONE einzustellen.

Die Position des Encoders direkt nach dem Aufstarten hat immer einen Wert zwischen 0 und 119'999Inc.

Z.B. bei einem mechanischen Anschlag ändert sich somit fahrbare Bereich des Encoders je nachdem in welchem Bereich (zwischen 0 und mechanischem Anschlag in positive Richtung oder zwischen 0 und mechanischem Anschlag in negative Richtung) der Motor aufstartet.









### 11.20.4 Referenz auf mechanischen Anschlag

### Auswahl REFERENCE LIMIT STOP

Nach einer absoluten Referenzierung eines LINAX® oder ELAX® kann zusätzlich noch auf einen mechanischen Anschlag der Maschine gefahren werden.

Wichtig: Dies ist optional und beeinflusst den absoluten Positionszähler nicht.

### **CREEP DIR**

POSITIVE (Fahrtrichtung positiv) NEGATIVE (Fahrtrichtung negativ)

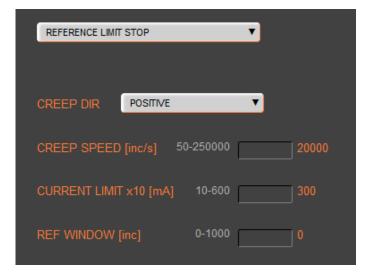
### **CREEP SPEED**

Fahrgeschwindigkeit auf mechanischen Anschlag [Inc/s]

### **CURRENT LIMIT**

Nominaler Motorstrom [x10mA] während der REF Fahrt Kraft F = Motorstrom x Kraftkonstante

### **REF WINDOW**


Maximal erlaubte Abweichung zur letzten REF Position [Inc].

REF WINDOW = 0, Prüfung ausgeschaltet
Output Funktion REF = 1

REF WINDOW = 1, Prüfung eingeschaltet

Abweichung innerhalb Toleranz (REF Window): Output Funktion REF = 1, aktuelle REF Position wird als neue Referenzposition übernommen.

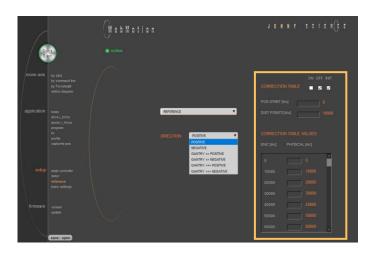
> Abweichung ausserhalb Toleranz: Output Funktion REF = 0, die darauffolgende Referenzfahrt wird als neue Referenzposition erfasst.





### 11.20.5 Korrekturtabelle für LINAX® / ELAX®

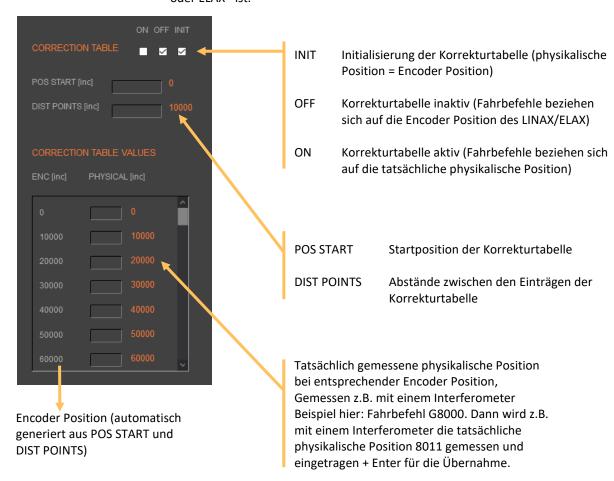
Je nach Art des konstruktiven Aufbaus, in dem eine LINAX®/ELAX® Linearmotor Achse verwendet wird, kann es sein, dass die Encoder Position des LINAX®/ELAX® nicht 100% mit der tatsächlichen physikalischen Position übereinstimmt (z.B. in Kreuztischanwendungen, bei hochaufliegenden Aufbauten mit Hebelwirkung usw.)


Der XENAX® Servocontroller bietet die Möglichkeit, in einem bestimmten Mass die Encoder Position mit der tatsächlichen physikalischen Position zu korrelieren. Dafür steht im WebMotion® eine Korrekturtabelle mit 51 Einträgen zur Verfügung, in der in fixen Abständen zur Encoder Position die entsprechende physikalische Position eingetragen werden kann. Die physikalische Position kann z.B. mit einem Interferometer gemessen werden.

Der Wegbereich für die Korrekturtabelle kann frei gewählt werden. Dazu können die Startposition der Tabelle sowie die Abstände zwischen den jeweiligen Tabelleneinträgen definiert werden. Soll z.B. ein Wegbereich von 0...100'000inc korrigiert werden, so wird als Startposition Oinc und für die Abstände zwischen den 50 weiteren Tabelleneinträgen 100'000inc / 50 = 2'000inc gewählt.

Die Korrekturwerte für die Tabelle werden folgendermassen bestimmt: Mit deaktivierter Korrekturtabelle werden alle Positionen in der Tabelle angefahren (im obigen Beispiel also Oinc, 2'000inc, 4'000inc, ..., 100'000inc). Bei jeder dieser Positionen wird z.B. mit einem Interferometer die tatsächliche physikalische Position gemessen und in die Tabelle eingetragen. Bei anschliessend aktivierter Korrekturtabelle beziehen sich nun alle Fahrbefehle auf die tatsächliche physikalische Position und nicht mehr auf die Encoder Position des LINAX®/ELAX.

### Einschränkungen:


- Die Korrekturtabelle steht nur für LINAX®/ELAX® zur Verfügung, nicht aber für rotatvie Motoren
- Die Korrekturtabelle steht nicht zur Verfügung bei Kommunikation über ein Real Time Bus Modul. In diesem Fall muss die übergeordnete Steuerung eine allfällige Korrektur übernehmen.
- Die Korrekturtabelle kommt nur bei folgenden Befehlen zur Anwendung: >G, >GP, >GW, >IX, >PRF, >RR, >RW, >TP





### Eingabe der Korrekturwerte im WebMotion®

Mit der Menü setup/reference wenn es ein LINAX® oder ELAX® ist.



### Hinweise zur Korrekturtabelle:

- Für Positionen ausserhalb der Korrekturtabelle wird die Korrektur des ersten bzw. des letzten Korrekturtabelleneintrags verwendet. Ist also beispielsweise der letzte Eintrag der Tabelle "ENC:100'000 -> PHYSICAL 100'017" so wird z.B. für die Encoder Position 110'000 die physikalische Position 110'017 verwendet.
- Die Positionswerte zwischen den Tabelleneinträgen werden interpoliert.
- Die Korrekturtabelle wird in den Applikationsdaten und somit auf dem XENAX® Servocontroller gespeichert.
- Nach einem Reset des XENAX® Servocontroller (Befehl "RES") wird die Korrekturtabelle initialisiert und deaktiviert (physikalische Position = Encoder Position).
- Während der Messung der physikalischen Positionen zum Ausfüllen der Korrekturtabelle muss die Korrekturtabelle deaktiviert sein.



### **ASCII Kommandos**

>RES (Reset XENAX®) die Korrekturtabelle ist ausgeschaltet, Encoder Werte = Physikalische Werte

>CTAB 0 (= OFF) >CTAB 1 (= ON) >CTAB 3 (= INIT)

>CTPS 0 (Setzen der Korrekturtabelle zur

Start Position)

>CTDP 10000 (Setzen der Korrekturtabelle Distanz

Position)

Setzen der individuellen Korrekturwerte

>CTPO 20000 (Auswählen der Absoluten Encoder

Position)

>CTVA 20003 (Setzen des Korrekturwertes mit der

gemessenen physikalischen

absoluten Position)

### Wichtig:

Die Referenzierung wird ebenfalls in Abhängig von der Mechanischen Position. Daher muss die Referenzierung immer an der gleichen Position gemacht werden. Wir suchen die Reference REF zwei Mal nacheinander.

### Beispiel vom Ablauf Referenz:

>REF Absolute Position auf den Motor

Massstab abgefahren

>G0 Gehe auf Absolut Position 0

>REF Absolut Position berechnet neben dem

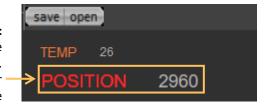
0 Punkt. Dies ist eine reproduzierbare

Position.

>G0 Gehe auf Absolut Position 0

→ Linear Motor ist jetzt Bereit

### **Hinweis:**


Die Position (WebMotion® / TP "Tell Position") ist die physikalische absolute Position.
Rot/weiss blinkende Anzeige bei aktivierter Korrekturtabelle

### Temperatureinfluss beim Messsystem

Neben der konstruktiv bedingten Positionsabweichung, welche mit Hilfe der Korrekturtabelle korrigiert werden kann, muss auch noch der Temperatureinfluss beim Messsystem berücksichtigt werden. Dieser kann durch die Korrekturtabelle nicht korrigiert werden und beträgt z.B. bei einem Messsystem mit Glasmassstab 8.5µm pro Grad und Meter. Siehe dazu Datenblatt des entsprechenden Motors.

### Beispiele:

1000mm Glasmassstab: pro 1° Celsius, 8.5μm Ausdehnung 230mm Glasmassstab: pro 1° Celsius = 2μm



### 11.21 Basic Settings

Allgemeine Setup Einstellungen

### **MODE**

Auswahl der Betriebsart

Standard 0
Electronic Gear 1
Stepper Control 2

Coded Prog No (Standard) 10
Coded Prog No (Stepper control) 12

### **INC PER PULSE**

Inc. pro Pulse, MODE 2, Puls/Richtungsansteuerung

### **SYNC RATIO**

Übersetzung für elektronisches Getriebe

### **CARD IDENTIFIER**

Master/Slave Betrieb, CANopen, Powerlink Eingelesen vom Start-Up Key (2 x Codierschalter) Falls kein Start-Up Key vorhanden kann die Adresse hier eingegeben werden.

### **IP ADDRESS**

Ethernet TCP/IP Adresse

### **SUBNET MASK**

Ethernet TCP/IP Subnetmask

# Mode Motion Move and by case. Spring formation Application Move and by formation Move of the control of th

### 11.22 Force Sensor

Die Einstellungen für den Kraftsensor sind nur mit angeschlossenem Signateq® Messverstärker möglich. Der Menupunkt ist sonst nicht sichtbar.

### **SENSOR TYPE**

Anzeige des angeschlossenen Sensor-Typ.

### **MEASURING RANGE**

Zeigt den Kalibrierten Messbereich des Sensors.

### **BANDWIDTH SIGNATEQ**

Bandbreite des Filters vom Signateq®
Messverstärker. Standardeinstellung per "Default"
Knopf. So hoch wählen das die gewünschte
Reaktionszeit erreicht wird.

### **Hinweis:**

Die Einstellung soll kleiner als die Resonanzfrequenz des Sensors sein.



### 11.23 Version

Übersicht der Hardware und Software Versionen von XENAX®, Busmodul und SMU Modul.

### XENAX®

Übersicht von Firmware, WebMotion®, Hardware und MAC-Adresse.

### **BUS-MODULE**

Optionales Busmodul mit Versionsangabe und Protokolltyp.

Mac-Adresse Ausgabe bei Profinet / Powerlink und EtherNet/IP

Ist die MAC-Adresse 0, fehlt die Eingabe vom Card Identifier

IP-Adresse Ausgabe bei EtherNet/IP

### **SMU-MODULE**

Optionales Safety Modul mit Versionsangabe.

### SIGNATEQ®

Optionaler Signateq® Messverstärker mit Versionsangabe.





### 11.24 Update Firmware

Laden neue Version Firmware und WebMotion® auf XENAX® oder Busmodul oder SMU Modul. Die zusammengehörenden Softwarekomponenten und Hardwareplattformen sind in den Release Notes ersichtlich.

### **XENAX FW Xvi75V8S**

Update der Firmware. Nach dem Wechsel auf das Update GUI, kann im Dropdown Menu "FIRMWARE" ausgewählt werden. Danach mit Mausklick auf "from file" über das Explorer Fenster das <\*.mot> File auswählen. Nach der Installation und dem Wechsel zurück auf die WebMotion® Oberfläche ("Exit Update GUI") sind alle Funktionen sofort verfügbar.

### **Empfohlener Ablauf des Updates:**

 Applikation speichern
 Nach Möglichkeit sollten PLC-Stecker und Busmodul -Anschluss entfernt werden.
 Wir empfehlen den Firmware Download direkt von einem PC via Punkt-Punkt Verbindung und nicht über

einen Switch vorzunehmen.
- Nach Abschluss des Downloads im Menu online
move axis / by command line den Befehl "RES"

(Reset) eingeben.
- Applikation wieder auf WebMotion® laden und im Servocontroller speichern

### **XENAX WebMotion**

Update vom WebMotion®. Nach dem Wechsel auf das Update GUI, kann im Dropdown Menu "WEBMOTION" ausgewählt werden. Danach mit Mausklick auf "from file" über das Explorer Fenster das <\*.mot> File auswählen. Nach der Installation und dem Wechsel zurück auf die WebMotion® Oberfläche ("Exit Update GUI") sind alle Funktionen sofort verfügbar.

### **BUS-MODULE Firmware**

Update der Busmodul Firmware (Nur verfügbar, wenn ein Busmodul vorhanden ist).

Datei(\*.flash) auswählen und laden.
Es wird empfohlen das entsprechende EDS (electronic data sheet) File in der PLC auch zu laden. Dieses ist im Ordner der Firmware enthalten.

### **SMU-MODULE FW SMU**

Update der SMU Firmware (Nur verfügbar, wenn eine SMU vorhanden ist).
Datei Safety\_Vx.xx.smu auswählen und laden.
Es wird empfohlen nach einem Safety Firmware update die Safety Einstellungen zu überprüfen und zu Testen.



### **SIGNATEQ FW Signateq**

Update des Signateq® Messverstärkers (Nur verfügbar, wenn ein Signateq® angeschlossen ist).

FW\_Signateq\_Vx.xx.stq auswählen und laden.

Nach dem Update ist ein Neustart des Kontrollers durchzuführen und danach die anliegende Kraft am Sensor mittels Befehl "TF" (Tell Force) auslesen um zu überprüfen das sich der Wert ändert.

### **Hinweis:**

Alternativ kann der XENAX® Ethernet Installer zum update jeder Firmware auf mehreren XENAX® Servocontroller gleichzeitig verwendet werden.

### 11.25 Save



### eingestellten Parameter, Daten und Programme enthalten.

Speichert Applikationen, die sämtliche vom Kunden

speichert die Applikation von WebMotion® auf XENAX®.

### to file

to XENAX

speichert die Applikation von WebMotion® in eine Datei auf dem PC/Laptop (Harddisk, Server).

### to startup key

Sicherung der Applikation in den Start-up Key zum schnellen Laden auf weitere XENAX®. Ist der Haken bei "with Ethernet settings" gesetzt, so werden die Ethernet Einstellungen auch auf den Start-up Key gespreichert und somit beim Laden in einen weiteren Servokontroller kopiert.

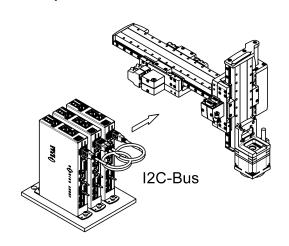
### 11.26 Open



# Lädt Applikationen, die sämtliche vom Kunden eingestellten Parameter, Daten und Programme enthalten.

### from file

lädt eine vorhandene Applikation von der Datei in WebMotion® und speichert diese im XENAX®.




### 12 Master / Slave

Es können bis zu vier Achsen in der Master / Slave Konfiguration von einem Programm zentral gesteuert werden.

Typische Anwendungen sind Handlingsmodule (Pick&Place).

Der Master arbeitet mit seinen Slaves autonom im Standalone-Betrieb und kann direkt von einem übergeordneten System über einfache I/O Signale gesteuert werden.



### 12.1 Master / Slave Gerätekonfiguration

Master- und Slave Geräte sind völlig identische Standard XENAX® Servocontroller.

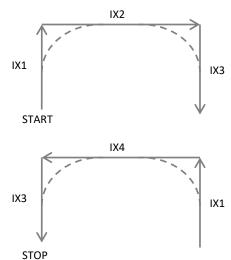
Der I<sup>2</sup>C-Bus wird über kurze Standard USB Patch Kabel geführt. Beide Stecker (USB-A) sind zum Durchschlaufen verwendbar. Keine Unterscheidung zwischen Input / Output.

> Der Parameter CI (Card Identifier) muss bei den Geräten wie folgt gesetzt werden:

| Gerät   | CI | Remote ID   |          |
|---------|----|-------------|----------|
| Master  | 0  | LOC (lokal) | Programm |
| Slave 1 | 1  | REM ID1     | -        |
| Slave 2 | 2  | REM ID2     | -        |
| Slave 3 | 3  | RFM ID3     | _        |

### Wichtig:

Das Programm läuft auf dem Master Servocontroller. Die Slave Servocontroller dürfen keine Programme enthalten.


Der Start-up Key ist in Master-Slave Konfiguration nicht verwendbar und darf nicht eingesteckt sein.



### 12.2 Programmbeispiel Pick&Place

X-Achse Master (LOC) Z-Achse Slave (REM ID1)





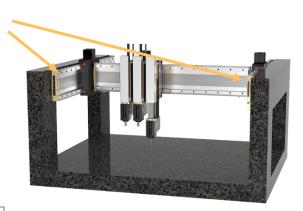
### Hinweis

Alle Indexe und Profile werden ausschliesslich im Master-Gerät definiert. Nach dem Einschalten der Geräte werden die Indexe und Profile automatisch zu den Slaves übertragen.

### 12.3 Timing Master / Slave

Der Programminterpreter wird im 1ms Takt verarbeitet. Zur Übertragung von Kommandos zu einem Slave-Controller werden 0.45ms benötigt.

Die Messung von zeitkritischen Abläufen ist mit dem Prozesstimer und den Befehlen TIMER\_START und TIMER\_STOP möglich. Die gemessene Zeit des Prozesstimers kann mit dem Befehl TPT (Tell Process Timer) gelesen werden.




### 13 Gantry Synchronbetrieb

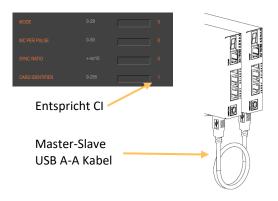
Im Gantry Betrieb sind in der gleichen Fahrrichtung zwei Achsen montiert. Diese zwei Achsen müssen synchron verfahren werden. Im nebenstehenden Beispiel sind dies die Y-Achsen.

Beim Einschalten sind nun die beiden Y-Achsen aufeinander auszurichten, damit die Achsen ohne mechanische Verspannung frei laufen können. Dies wird mit der Funktion "REFERENZ" automatisch ausgeführt. Für die Funktion "REFERENZ" für Gantry Systeme müssen folgende Informationen vorliegen:

| Anordnung der beiden Linearmotor-Achsen      |
|----------------------------------------------|
| Sind Fahrrichtungen vom mechanisch absoluten |
| Nullpunkt gleich oder entgegengesetzt        |
| In welche Richtung soll die Referenzierung   |
| erfolgen (Parameter DRHR)                    |

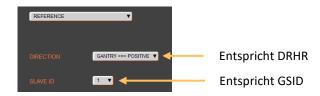


### 13.1 Gantry Betrieb aktivieren


Diejenige Achse mit der kommuniziert werden soll (ASCII Kommandos) wird als Master bezeichnet. Der Slave ist via USB A-A Kabel mit dem Master zu verbinden.

Auf dem Slave ist ein CARD IDENTIFIER zwischen 1-3 einzugeben. Entweder über WebMotion® unter setup->basic->CARD IDENTIFIER oder mit dem ASCII Kommando >CI x (x = 1-3). Oder mit einem Start-up Key und eingestellter Adresse zwischen 1-3. Beim nächsten Einschalten der Logikspeisung ist diese CI Nummer vom Start-up Key eingestellt.

Dem Master ist die Nummer 0 oder eine andere Card Identifier (CI) Nummer als dem Slave zuzuteilen.


| XENAX® | Parameter | Bezeichnung                                           |
|--------|-----------|-------------------------------------------------------|
| SLAVE  | CI        | Card Identifier                                       |
| MASTER | DRHR      | Fahrrichtung Referenz und<br>Anordnung LINAX® / ELAX® |
|        |           | Linear Achsen                                         |
| MASTER | GSID      | Gantry Slave ID                                       |
|        |           | entspricht CI Slave                                   |

Mit diesen Einstellungen ist der Gantry Betrieb aktiviert



### Eingabe WebMotion®

(Diese Einstellungen müssen nur auf dem XENAX® Master vorgenommen werden)





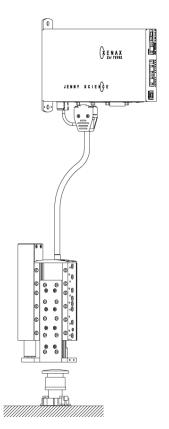
### 13.2 ASCII Befehlssatz Gantry Synchronbetrieb

| Befehl | Bezeichnung                      |
|--------|----------------------------------|
| REF    | Reference                        |
| GP / G | Go Position / Go direct Position |
| GW     | Go Way                           |
| IX     | Index                            |
| PRF    | Profil Nr. xx starten            |
| PG     | Programm                         |
| *EE    | Emergency Exit*                  |
| *EE1   | Emergency Exit 1*                |
| SM     | Stop Motion                      |

<sup>\*</sup> EE und EE1 dürfen nur bei einem Gantry Master parametriert werden

Kann auch als INPUT FUNCTION im Master ausgelöst werden. Referenz, Profile und Index können auch in einem Programm aufgerufen werden.




### 14 Forceteq® Kraftmesstechnologie

## 14.1 Forceteq® basic strombasiert mit selbst kalibriertem Motor

Die Forceteq® basic Kraftmesstechnologie ist komplett integriert in die XENAX® Xvi Servocontroller. Damit können alle Jenny Science Linear- und Drehmotor-Achsen kraftüberwacht angesteuert werden. Die Kraftmessung erfolgt während des Produktionsprozesses mit der patentierten Forceteq® Kraftmesstechnologie, ohne externen Kraftsensor. Damit können Sie bei allen Bewegungen qualitätsrelevante Kraft-Weg-Diagramme erfassen und aufzeichnen. Fügeprozesse können somit «in-prozess» überwacht werden. Fehler und Abweichungen werden sofort erkannt. Das bedeutet bessere Qualität und höheren Durchsatz. Extra Prüfstationen sind nicht mehr notwendig.

- Für Standalone Betrieb
- bis 10 Kraftsektoren programmierbar mit WebMotion®





Die einzelnen Achs-Typen unterscheiden sich in Auflösung und Genauigkeit der Kraft und der messbaren Minimalkraft.

| Linear-Motor   | Kraftkonstante  | Messbare<br>Minimalkraft | Auflösung |
|----------------|-----------------|--------------------------|-----------|
| LINAX® Lxc F08 | 1N ~ 32 * 10 mA | 0.5 N                    | 0.25 N    |
| LINAX® Lxc F10 | 1N ~ 28 * 10 mA | 0.5 N                    | 0.25 N    |
| ELAX® Ex F20   | 1N ~ 12 * 10 mA | 0.5 N                    | 0.25 N    |
| LINAX® Lxc F40 | 1N ~ 11 * 10 mA | 1.0 N                    | 0.5 N     |
| LINAX® Lxu F60 | 1N ~ 10 * 10 mA | 10.0 N                   | 5.0 N     |

| Rotativ-Motor | Drehmomentkonstante | Messbares min.<br>Drehmoment | Auflösung |
|---------------|---------------------|------------------------------|-----------|
| ROTAX® Rxhq   | 10mNm ~ 8 * 10 mA   | 20 mNm                       | 10 mNm    |
| ROTAX® Rxvp   | 10mNm ~ 23 * 10mA   | 6 mNm                        | 3 mNm     |



## 14.2 Forceteq® pro präzis mit Signateq® und externem Kraftsensor

Mit dem neu entwickelten Signateq® Messverstärker kann ein handelsüblicher DMS-Kraftsensor direkt mit dem XENAX® Xvi 75V8S Servocontroller verbunden werden. Durch den Einsatz eines Kraftsensors wird die Mess- und Regelgenauigkeit der Forceteq® Kraftmesstechnologie wesentlich präziser. Dank zweistufigem Messverstärker verringert sich das Signalrauschen und es können problemlos Sensoren mit niedriger Sensitivität eingesetzt werden.

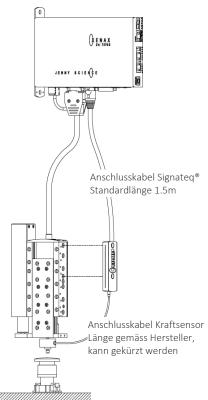
### Signateq® Messverstärker

| Länge  | 78mm   |  |  |
|--------|--------|--|--|
| Breite | 27.5mm |  |  |
| Höhe   | 12mm   |  |  |

| Abtastrate Kraftwerte Sensor          | 2µs                      |  |
|---------------------------------------|--------------------------|--|
| Übertragungsrate der Mittelwerte      | 100µs                    |  |
| Bandbreite Signateq® (Messverstärker) | 100Hz bis 5kHz           |  |
| Sensitivitätsbereich*)                | 0.12mV/V bis 5.86mV/V    |  |
| Kraftauflösung                        | Max Kraft Sensor / 3'732 |  |

\*) Bei Sensitivität höher als 5.86mV/V wird der Messbereich nach oben begrenzt. Beispiel Messbereich 0 bis 2.5N, Sensitivität 15mV/V dann ist der Messbereich limitiert auf 0-0.97N




Beispiel: Kraftsensor Typ 8432 von Burster mit Überlastschutz.

| Relative Linearitätsabweichung | 0,15 %               |  |
|--------------------------------|----------------------|--|
| Messbereiche                   | 0 2,5 N bis 0 100 kN |  |

### Kraftauflösung

| Art. Nr. Burster | Messbereich | Sensitivität | Kraftauflösung    |
|------------------|-------------|--------------|-------------------|
| 8432-5005        | 0 - 5 N     | 0.75mV/V     | 1.3 mN / 0.13 gf  |
| 8432-5010        | 0 - 10 N    | 1.5mV/V      | 2.7 mN / 0.28 gf  |
| 8432-5020        | 0 - 20 N    | 2.0mV/V      | 5.4 mN / 0.55 gf  |
| 8432-5050        | 0 - 50 N    | 2.0mV/V      | 13.4 mN / 1.37 gf |
| 8432-5100        | 0 - 100 N   | 2.0mV/V      | 26.8 mN / 2.73 gf |
| 8432-5200        | 0 - 200 N   | 2.0mV/V      | 53.6 mN / 5.47 gf |

[gf] = gramm-force





### Kennwerte der möglichen Linearmotor-Achsen

| Linearmotor Typ<br>Messystem                  | Max.<br>Kraft | Max. Fahrweg<br>[mm]        | Forceteq basic<br>Auflösung | Forceteq pro<br>Auflösung / Messber. |
|-----------------------------------------------|---------------|-----------------------------|-----------------------------|--------------------------------------|
| LINAX <sup>®</sup> Lxc F08,<br>1μm/100nm opt. | 24N           | 44*                         | 0.25 N                      | 5.4mN, bei max. 20N                  |
| LINAX® Lxc F10,<br>1µm/100nm opt.             | 30N           | 85*, 135, 230               | 0.25 N                      | 5.4mN, bei max. 20N                  |
| ELAX® Ex F20,<br>1μm magn.                    | 60N           | 30*, 50*, 80*,<br>110*, 150 | 0.25 N                      | 13.4mN, bei max. 50N                 |
| LINAX® Lxc F40,<br>1µm/100nm opt.             | 112N          | 80*, 176*, 272              | 0.5 N                       | 26.8 mN, bei max. 100N               |
| LINAX® Lxu F60,<br>1µm magn./100nm opt.       | 180N          | 40*, 80*, 160*,<br>240, 320 | 5.0 N                       | 53.6 mN, bei max. 180N               |
| LINAX® Lxs F60,<br>1µm magn./100nm opt.       | 180N          | 160 bis 1600                | 5.0 N                       | 53.6 mN, bei max. 180N               |

<sup>\*</sup> Lieferbar mit Gewichtskompensation bei Vertikaleinbau, kann die Kraftauflösung bei Forceteq® basic reduzieren



### 14.3 Forceteq® basic via Realtime Bus

Die Kraftwerte werden als Prozessdatenobjekte (PDO) zyklisch gemäss Buszykluszeit übertragen.

### 14.3.1 CANopen over Ethernet

| Parameter               | Objekt (PDO) | Bezeichnung                            |  |
|-------------------------|--------------|----------------------------------------|--|
| Position Actual [Inc]   | 6064h        | Aktuelle Position                      |  |
| I_Force Actual [mA]     | 2005h        | Kraftäquivalenter Strom                |  |
| Limit I_Force [x10mA]   | 6073h        | Limitierung kraftäquivalenter Strom    |  |
| Process Status Register | 2006h Bit 15 | Limit kraftäquivalenter Strom erreicht |  |

### 14.3.2 Ethernet/IP

| Parameter             | Klasse | Instanz | Id        | Bezeichnung                            |
|-----------------------|--------|---------|-----------|----------------------------------------|
| PositionActual [Inc]  | 0x66   | 0x1     | 0x24      | Aktuelle Position                      |
| IForceActual [mA]     | 0x64   | 0x1     | 0x5       | Kraftäquivalenter Strom                |
| LimitIForce [x10mA]   | 0x66   | 0x1     | 0x33      | Limitierung kraftäquivalenter Strom    |
| ProcessStatusRegister | 0x64   | 0x1     | 0x6 Bit15 | Limit kraftäquivalenter Strom erreicht |

### 14.3.3 Profinet

| Parameter               | PROFIdrive<br>Telegramm 9 | I/O Data<br>Nummer | Bezeichnung                            |  |
|-------------------------|---------------------------|--------------------|----------------------------------------|--|
| XIST_A [Inc]            | Standard                  | 4&5                | Aktuelle Position                      |  |
|                         | Supplementary             | 2.0.0              | v 6                                    |  |
| I_Force Actual [mA]     | Data 4                    | 2&3                | Kraftäquivalenter Strom                |  |
|                         | Data 5                    | 1&2                |                                        |  |
|                         | Supplementary             |                    | Limitierung kraftäquivalenter          |  |
| Limit I_Force [x10mA]   | Data 4                    | 1                  | Strom                                  |  |
|                         | Data 5                    | 1                  |                                        |  |
|                         | Supplementary             |                    |                                        |  |
| Process Status Register | Data 4                    | 6&7 Bit 15         | Limit kraftäquivalenter Strom erreicht |  |
|                         | Data 5                    | 5&6 Bit 15         |                                        |  |



### 14.4 Forceteq® basic im XENAX®

### 14.4.1 I\_Force Calibration

Mit der patentierten Funktion "Force Calibration" des XENAX® Servocontrollers können die Cogging-, Lastund Reibkräfte der eisenbehafteten LINAX® und
ELAX® Linearmotor-Achsen sowie der ROTAX®
Drehmotor-Achsen von Jenny Science erfasst werden.
Damit wird es möglich, Kräfte in Prozessen zu
limitieren, zu überwachen und zu steuern.

**START**: Bestimmt die Anfangsposition des Kalibrierungsprozesses in Inkrement

**END**: Bestimmt die Schlussposition des Kalibrierungsprozesses in Inkrement.

Um die Genauigkeit der erfassten Kräfte bei Temperaturschwankungen zu erhöhen, wird bei ausgeschalteter Endstufe laufend der Temperaturdrift der Erfassung kompensiert. Die Kompensation erfolgt auch vor jedem Start einer "Force Calibration".

# START 0 END 80000 Start Reset DATA PRESENT SERVO ON CALIBRATION OFF CALIBRATION OFF Test ohne Kalibration

### 14.4.2 I\_Force Limitation

Der Stromwert I\_Force ist proportional zur Kraft. Nachstehend das entsprechende Verhältnis bei den verschieden Motortypen.

| LINAX®<br>Linearmotor-Achse | Kraftkonstante | Messbare<br>Minimalkraft | Auflösung |
|-----------------------------|----------------|--------------------------|-----------|
| Lxc F04                     | 50 * 10mA ~ 1N | 0.5N                     | 0.25N     |
| Lxc F08                     | 32 * 10mA ~ 1N | 0.5N                     | 0.25N     |
| Lxc F10                     | 28 * 10mA ~ 1N | 0.5N                     | 0.25N     |
| Lxc F40                     | 11 * 10mA ~ 1N | 1N                       | 0.5N      |
| Lxe F40                     | 11 * 10mA ~ 1N | 10N                      | 5N        |
| Lxu/Lxs F60                 | 10 * 10mA ~ 1N | 10N                      | 5N        |
| ELAX®                       | Kraftkonstante | Messbare                 | Auflösung |

| ELAX®<br>Linearmotor-Schlitten | Kraftkonstante           | Messbare<br>Minimalkraft | Auflösung |
|--------------------------------|--------------------------|--------------------------|-----------|
| Ex F20                         | 12 * 10mA ~ 1N           | 0.5N                     | 0.25N     |
| ROTAX®<br>Drehmotor-Achse      | Drehmoment-<br>konstante | Messbares<br>Min.moment  | Auflösung |
| Rxhq T0.3                      | 8 * 10mA ~ 0.01Nm        | 0.02Nm                   | 0.01Nm    |
| Rxvp T0.04                     | 23 * 10mA ~ 0.01Nm       | 0.006Nm                  | 0.003Nm   |

I\_FORCE LIMITATION

FORCE CONSTANT

12 x 10mA ~ 1N

I\_FORCE x 10mA 48

COMMAND 48

Beispiel:

Ein Druckstempel darf nur mit einer maximalen Kraft von 4N auf das Objekt einwirken.

Kraft Limitierung mit "LIMIT I-FORCE" z.B. ELAX® Kraftkonstante: 12 x 10mA  $^{\sim}$  1 N **48** x 10mA  $^{\sim}$  4 N



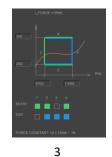
### 14.4.3 I\_Force Monitoring

### 14.4.3.1 Diagramm I\_Force

Im Programmmenü "Diag I\_Force" kann das Weg/Kraftdiagramm aufgezeichnet und der Durchlauf der Sektoren nachvollzogen werden.



### 14.4.3.2 Sector I\_Force


Im WebMotion® Programmmenü "sector i-force" können bis zu 10 verschiedene Kraftsektoren definiert werden.

### Beispiel:

Ab einer Berührungsposition soll der Kraftverlauf in einem Sektor von 150 bis 170 Inc. geprüft werden. Dabei soll beim "ENTRY" in den Sektor eine Kraft im Bereich von 3-4N vorhanden sein. Beim "EXIT" soll die Kraft 4N erreicht haben. Diese Definition erfolgt über Ein- und Austrittslinien des Kraftsektors. 2

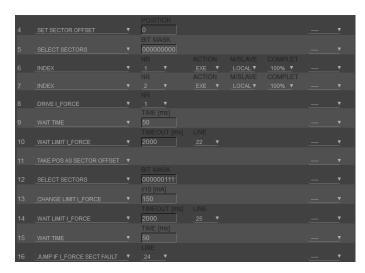
- 1) Kraftlinie muss die Sektorfläche durchqueren von links/unten nach rechts/oben.
- 2) Kraftlinie muss die Sektorfläche durchqueren von unten nach oben.
  - 3) Kraftlinie muss die Sektorfläche erreichen und kann dabei die Ein- und Austrittslinien des Kraftsektors mehrfach durchqueren.

# U-COCCE CONSTANT T2 a 100A - 10



### Hinweis:

Sind Ein- und Austrittslinien definiert, so muss die Kraftlinie zwingend eine von diesen durchqueren. Sind keine Eintrittslinien definiert so muss die Kraftlinie innerhalb des Sektors beginnen. Sind keine Austrittslinien definiert, so muss die Kraftlinie innerhalb des Sektors enden.




### 14.4.4 I\_Force Control

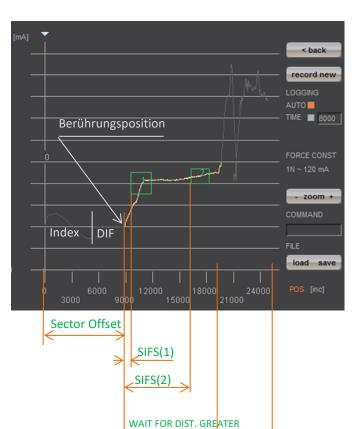
### 14.4.4.1 Programm mit I\_Force Control Kommandos

Im WebMotion® Programmenü "program" können mit Hilfe der Befehlssätze die Kraftfunktionen von I\_FORCE CALIBRATION, I\_FORCE LIMITATION und I\_FORCE MONITORING in einem Programm definiert und zusammengefasst werden.

Den Befehlssatz finden sie im Kapitel 11.14.1 Befehlssatz Program.



### 14.4.4.2 Drive I\_Force


DRIVE I\_FORCE ist eine Fahrt auf Kraft, bestehend aus Beschleunigung (ACC), Geschwindigkeit (SPEED), Strom (I\_FORCE) und Fahrrichtung (DIRECTION).

Nach Definition der obengenannten Parameter kann DRIVE I\_FORCE ebenfalls im Programm eingebunden werden.

Es können bis zu 10 DRIVE I\_FORCE gespeichert werden.



### 14.4.5 Sector Offset für Berührungsposition



JUMP IF DISTANCE LESS

Typischerweise wird ein Objekt zuerst berührt. Alle nachfolgenden Funktionen beziehen sich dann immer auf diese Berührungsposition. Je nach der Grössentoleranz der Objekte ist diese Berührungsposition immer unterschiedlich.

Die Berührungsposition kann sehr einfach mit Drive I\_Force (bei kleiner Kraft) "erfasst" werden. Dann wird mit dem Befehl "TPSO" (Take IST-Position as Sector Offset) diese Berührungsposition als Sector Offset für die nachfolgenden Funktionen vorangestellt.

Zum Bestimmen der Werte "Sector I\_Force Start" und "Sector I\_Force End" wird am einfachsten die Kraftkurve aufgezeichnet und dann die Distanz zur Berührungsposition berechnet (Absolutposition – Sector Offset)

"Sector I\_Force Start", "Sector I\_Force End", "Wait for Distance greater/less" und "Jump if Distance greater/less" sind Distanzen relativ zur Berührungsposition (Sector Offset)

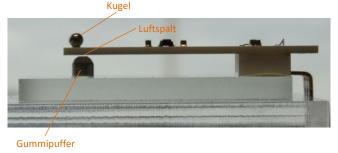
Mit "SSO" Set Sector Offset = 0 entsprechen die Distanzen den Absolutpositionen



### 14.4.6 Applikationsbeispiel

Ein Kraftsensor bestehend aus einem Trägerplättchen aus Keramik und darauf geklebten Dehnungsmess-Elementen soll auf Funktion geprüft werden.

Der Kraftsensor misst die extern einwirkende Kraft die auf die glänzende Kugel oben links wirkt.




Mit dem ELAX® Linearmotor-Schlitten und dem XENAX® Servocontroller soll die Kugel berührt und die Position erfasst werden. Diese Berührungsposition ist der Offset für die eigentliche Messung der Kraftkennlinie. Mit dem Offset werden Höhentoleranzen der unterschiedlichen Messobjekte kompensiert.



Ab der Berührungsposition soll die Kraftkennlinie des Keramikplättchens aufgezeichnet werden.
Nach nur ca 200 μm Luftspalt trifft das Keramikplättchen auf den Gummipuffer. In dieser Position steigt die Kraft steiler an, da der Gummipuffer nun auch dagegen hält. Dabei ist die Maximalkraft auf ca 12N ~ 150 x 10mA limitiert. Es interessieren der Kraftanstieg während der Biegung und die Position, wo die Kraftkennlinie einen Knick nach oben macht, infolge des Gummipuffers. Dazu werden im Beispiel 5 verschiedene Sektoren auf der Kraft-/Wegkennlinie definiert, die korrekt durchfahren werden sollen.

Nachstehend das entsprechende Programmbeispiel, einmal als Standalone Version im XENAX® Servocontroller gespeichert, und nochmals via Befehlssatz, angesteuert von einer übergeordneten Steuerung.





### 14.4.6.1 Applikation als Programm im XENAX®

### Input / Output Schnittstellendefinition

INPUT FUNCTIONS:

Input 1 = Programm 1, Referenzieren und Fahren auf Position 0
Input 2 = Programm 2, Force Calibration, Kraft-kalibrierung des

**ELAX®** Linearmotor Schlittens

Input 3 = Programm 3, Kompletter Prüfablauf mit Auswertung

**OUTPUT "STATUS":** 

Output 1 = Keine Berührungsposition gefunden  $\rightarrow$  Kein Prüfobjekt

vorhanden

Output 2 = Fehler beim Prüfobjekt

Output 5 = Prüfobjekt OK

INDEX, DRIVE I\_FORCE und SECTORS

\*\*\*\*\*\* Index 1\*\*\*\*\*
INDEX 1, fahren auf Olnc. absolut Acc x1000 = 1000

 $(1lnc = 1\mu m)$  Speed = 100000

Dist = 0 AbsRel = 1

INDEX 2, fahren auf 30'000Inc. absolut Acc x1000 = 1

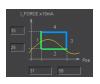
\*\*\*\*\*\* Index 2\*\*\*\*\* Acc x1000 = 1000

Speed = 100000 Dist = 30000

AbsRel = 1

\*\*\*\*\*\* Drive I Force 1 \*\*\*\*\*\*\*\*\*\*

Fahren auf Kraft, Kraft auf 0.5N zum Erkennen der Berührungsposition.


 $(1N = 12 \times 10mA)$ 

Acc x1000 = 100 Speed = 5000 IForce x10mA = 6 Direction = 0

Um die Sektorparameter zu bestimmen ist folgende Vorgehensweise empfehlenswert:

- Mit kleiner Kraft (z.B 0.5-1.0N) auf das Prüfobjekt fahren (Drive I\_Force) und die Berührungsposition merken. (Offset, entspricht der Position bei der "Pfeilspitze")
- 2. Kraft-, Wegdiagramm eines korrekten Prüfobjekts aufzeichnen. Dann die gewünschten Prüfsektoren in die Kraftkennlinie "hineinlegen" und die Parameter herauslesen. Bei Sector I\_Force Start/End ist jeweils der Offset der Berührungsposition abzuziehen.







\*\*\*\*\*\* Sector I\_Force 1 \*\*\*\*\*\*\*\*\*

Sector IForce Start = 31

Sector IForce End = 58

IForce Low x10mA = 25

IForce High x10mA = 35

Sector Transit Config = 12480

\*\*\*\*\*\* Sector I\_Force 2 \*\*\*\*\*\*\*\*\*

Sector IForce Start = 100

Sector IForce End = 130

IForce Low x10mA = 65

IForce High x10mA = 75

Sector Transit Config = 12480





Kein Austritt "EXIT" Endposition soll im Sektor sein



Referenzieren und Fahren auf Position 0, INDEX 1

Linearmotor-Schlitten Kalibrieren durch erfassen aller Kräfte (Cogging, Reibung, Gewicht usw.)

Kompletter Prüfvorgang mit Auswertung

Output Statusanzeigen zurücksetzen

Initialisieren Sektor Offset auf 0 (nicht zwingend) Ausgewählte Sektoren 0 (nicht zwingend)

Fahren auf Position 0, ganz nach oben

Fahren auf Position 30000, schnelles Fahren auf Vorposition

Fahren auf Berührungsposition mit kleiner Kraft (0.5N) Kurze Wartezeit, falls beim Beschleunigen Kraft überschritten wird (bei kleinen Kräften).

Warten auf Erreichung von LIMIT I\_FORCE. Falls keine Berührungsposition erkannt in Timeout Zeit, dann Absprung auf Fehler, kein Objekt vorhanden, Output 1 ON Kurze Wartezeit zum Berührungsposition stabilisieren Nimmt Berührungsposition als Offset für nachfolgende Tests Auswahl Sektoren 1-5

I\_FORCE für aktuellen Drive I\_Force von 6 auf 150 = 12.5N Timeout falls Kraft nicht erreicht, dann kein Output 5 Kurze Wartezeit nach Kraft Limit erreicht zum "Stabilisieren"

Drive I\_Force beenden Ausgewählte Sektoren testen, falls Fehler, Absprung auf Fehler Output 5 ON, Objektprüfung OK. \*\*\*\*\*\* Sector I\_Force 3 \*\*\*\*\*\*\*\*\*\*

Sector IForce Start = 158

Sector IForce End = 178

IForce Low x10mA = 119

IForce High x10mA = 121

Sector Transit Config = 8320

\*\*\*\*\*\* Sector I\_Force 4 \*\*\*\*\*\*\*\*\*\*

Sector IForce Start = 162

Sector IForce End = 182

IForce Low x10mA = 139

IForce High x10mA = 141 Sector Transit Config = 8320

\*\*\*\*\*\* Sector I\_Force 5 \*\*\*\*\*\*\*\*\*\*

Sector IForce Start = 170
Sector IForce End = 185
IForce Low x10mA = 148
IForce High x10mA = 152
Sector Transit Config = 12288

\*\*\*\*\*\* Program 1 \*\*\*\*\*\*
Line 1 REFERENCE

Line 2 INDEX 1 ACTION = EXECUTE M/SLAVE DEVICE = LOCAL COMPLETION = 100%

\*\*\*\*\*\* Program 2 \*\*\*\*\*

Line 1 FORCE CALIBRATION POSITION START = 0 POSITION END = 50000

\*\*\*\*\*\* Program 3 \*\*\*\*\*

Line 1 CLEAR OUTPUT 1 M/SLAVE DEVICE = LOCAL

Line 2 CLEAR OUTPUT 2 M/SLAVE DEVICE = LOCAL Line 3 CLEAR OUTPUT 5 M/SLAVE DEVICE = LOCAL

Line 4 SET SECTOR OFFSET POSITION = 0

Line 5 SELECT SECTORS 0

Line 6 INDEX 1 ACTION = EXECUTE M/SLAVE DEVICE = LOCAL COMPLETION = 100%

Line 7 INDEX 2 ACTION = EXECUTE M/SLAVE DEVICE = LOCAL COMPLETION = 100%

Line 8 DRIVE I FORCE 1

Line 9 WAIT TIME TIME [ms] = 50

Line 10 WAIT LIMIT I\_FORCE TIMEOUT = 2000ms LINE = 23

Line 11 WAIT TIME TIME [ms] = 20

Line 12 TAKE POS AS SECTOR OFFSET

Line 13 SELECT SECTORS 11111

Line 14 CHANGE LIMIT I\_FORCE | I\_FORCE = 150

Line 15 WAIT LIMIT I\_FORCE TIMEOUT = 2000ms LINE = 26

Line 16 WAIT TIME TIME [ms] = 20

Line 17 DRIVE I\_FORCE END

Line 18 JUMP IF I\_FORCE SECT FAULT LINE = 25

Line 19 SET OUTPUT 5 M/SLAVE DEVICE = LOCAL

Line 20 SELECT SECTORS 0

Line 21 INDEX 1 ACTION = EXECUTE M/SLAVE DEVICE = LOCAL COMPLETION = 100%

Line 22 PROGRAM END

Line 23 SET OUTPUT 1 M/SLAVE DEVICE = LOCAL

Line 24 GOTO LINE 26

Line 25 SET OUTPUT 2 M/SLAVE DEVICE = LOCAL

Line 26 DRIVE I FORCE END

Line 27 INDEX 1 ACTION = EXECUTE M/SLAVE DEVICE = LOCAL COMPLETION = 100%



## 14.4.6.2 Kraftprozess mit ASCII Befehlen

Vorab die ermittelten Sektorparameter in den XENAX® Servocontroller laden. Es sind insgesamt 5 Sektoren



Hier die Beschreibung für den 1. Sektor, die weiteren Sektoren 2-5 sind analog dazu.

Vorwahl Sektor Nummer
Sector I\_Force Start [Inc]
Sector I\_Force End [Inc]
IFL I\_Force Low [x10mA]
IFL I\_Force High [x10mA]
Sector Transition Configuration

Parameter Sector 1 laden >NSEC 1 >SIFS 31 >SIFE 58 >IFL 25

> >IFH 35 >STC 12480

Um diese Parameter unter "sector i\_force" im Webbrowser zu sehen, ist die Seite neu zu laden. Damit werden die Parameter vom XENAX® in die Webbrowser Darstellung transferiert.

STC Parameter mit Win Calc berechnen
(Ansicht/Programmierer)
Dezimalwert kann auch negativ sein falls oberstes Bit,
Entry 4 gesetzt ist.

| Bit 1512 | 118      | 74           | 30       |
|----------|----------|--------------|----------|
| Entry    | not used | Exit         | not used |
| 4321     | 0        | 4321         | 0        |
| 0011     | 0000     | <b>11</b> 00 | 0000     |



# Programmablauf

Achse Referenzieren >REF Fahren auf Position 0 >G 0

Alte Kalibrierwerte löschen (optional)
Prüfobjekt entfernen, Achse muss frei fahren können.
Force Calibration von 0 bis 50000 Inc durchführen (nur einmalig)
Force Calibration Test, ob Schlitten in balance (optional)
Zurück in Positionsregelung (optional)

>FC 0 >FC 50000

>FCT1 >FCT0

Sector Offset auf 0 setzen (optional)
Auswahl der Sektoren die aktiv sein sollen auf 0, erst aktivieren vor
Prüffahrt, damit die Auswertung SIFF? korrekt ist

>SSO 0 >SSEC 0

Fahren auf Position 30'000 Inc

>G 30000 >DP100

Deviation Position reduzieren, damit sich die intern berechnete Sollposition sich nicht zu weit von der Ist-Position bei Drive I\_Force entfernt. Sonst ergibt sich ein Sprung in der Positionierung bei Erhöhung von I\_Force (CLIF 150). Nur notwendig bei längerer Wartezeit nach erreichen Drive I\_Force.

Force.

Drive I\_Force 1 auf Berührungsposition >DIF 1
Take Position as Sector Offset (Berührungsposition) >TPSO
Aktivieren Sektoren 1-5 >SSEC11111
Ändern Limit I\_FORCE auf 150 x 10mA >CLIF 150
Tell Prozess Status Register, auf Bit 5 "IN FORCE" prüfen >TPSR

Drive I\_Force beenden mit Stop Motion Zeigt die Sekoren welche fehlerhaft sind, soll 0 zurückgeben Deviation Position auf alten Wert zurückstellen Fahren auf Position 0

>SM >SIFF? >DP1000 >G 0



# 14.5 Forceteq® pro via Realtime Bus

Die Kraftwerte werden als Prozessdatenobjekte (PDO) zyklisch gemäss Buszykluszeit übertragen.

# 14.5.1 CANopen over Ethernet

| Parameter               | Objekt (PDO) | Bezeichnung                |
|-------------------------|--------------|----------------------------|
| Position Actual [Inc]   | 6064h        | Aktuelle Position          |
| Force Actual [mN]       | 200Ah        | Aktuelle Kraft             |
| Limit Force [mN]        | 2009h        | Kraft Limitierung          |
| Process Status Register | 2006h Bit 27 | Kraft Limitierung erreicht |

# 14.5.2 Ethernet/IP

| Parameter             | Klasse | Instanz | ld        | Bezeichnung                |
|-----------------------|--------|---------|-----------|----------------------------|
| PositionActual [Inc]  | 0x66   | 0x1     | 0x24      | Aktuelle Position          |
| ForceActual [mN]      | 0x64   | 0x1     | OxA       | Aktuelle Kraft             |
| LimitForce [mN]       | 0x64   | 0x1     | 0x9       | Kraft Limitierung          |
| ProcessStatusRegister | 0x64   | 0x1     | 0x6 Bit27 | Kraft Limitierung erreicht |

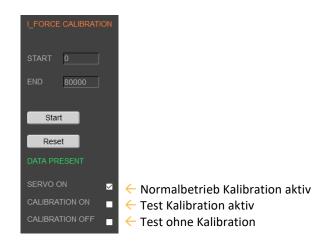
## 14.5.3 Profinet

| Parameter               | PROFIdrive<br>Telegramm 9         | I/O Data<br>Nummer       | Bezeichnung                |
|-------------------------|-----------------------------------|--------------------------|----------------------------|
| Position Actual [Inc]   | Standard                          | 4&5                      | Aktuelle Position          |
| Force Actual [mN]       | Supplementary<br>Data 4<br>Data 5 | 4&5<br>3&4               | Aktuelle Kraft             |
| Limit Force [mN]        | Supplementary<br>Data 4<br>Data 5 | 2&3<br>2&3               | Kraft Limitierung          |
| Process Status Register | Supplementary<br>Data 4<br>Data 5 | 6&7 Bit 27<br>5&6 Bit 27 | Kraft Limitierung erreicht |



# 14.6 Forceteq® pro im XENAX®

#### 14.6.1 I\_Force Calibration


Mit der patentierten Funktion "Force Calibration" des XENAX® Servocontrollers können die Cogging-, Lastund Reibkräfte der eisenbehafteten LINAX® und ELAX® Linearmotor-Achsen sowie der ROTAX® Drehmotor-Achsen von Jenny Science erfasst werden.

Damit wird es möglich, Kräfte in Prozessen zu limitieren, zu überwachen und zu steuern.

**START**: Bestimmt die Anfangsposition des Kalibrierungsprozesses in Inkrement

**END**: Bestimmt die Schlussposition des Kalibrierungsprozesses in Inkrement.

Um die Genauigkeit der erfassten Kräfte bei Temperaturschwankungen zu erhöhen, wird bei ausgeschalteter Endstufe laufend der Temperaturdrift der Erfassung kompensiert. Die Kompensation erfolgt auch vor jedem Start einer "Force Calibration".



## 14.6.2 Force Limitation

Fahren mit limitierter Kraft auf ein Objekt oder Endposition falls keine Objekte vorhanden (z.B. Teile einfügen). Oder fahren mit ganz kleiner Kraft zum Erkennen der "Objekt Berührungsposition".

Beispiel: Ein Druckstempel darf nur mit einer maximalen

Kraft von 1.5N auf ein Objekt einwirken

Kraft Limitierung mit "LIMIT FORCE" 1500mN

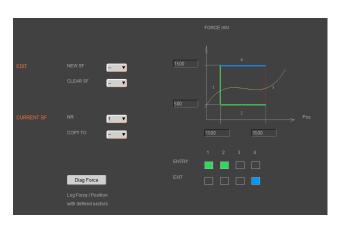




#### 14.6.3 Force Monitoring

#### 14.6.3.1 Diagram Force

Im Programmmenü "Diag Force" kann das Weg/Kraftdiagramm aufgezeichnet und der Durchlauf der Sektoren nachvollzogen werden.

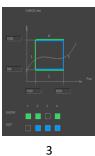



#### 14.6.3.2 Sector Force

Im WebMotion® Programmmenü "sector force" können bis zu 10 verschiedene Kraftsektoren definiert werden.

#### Beispiel:

Ab einer Berührungsposition soll der Kraftverlauf in einem Sektor von 1500 bis 3500 Inc. geprüft werden. Dabei soll beim "ENTRY" in den Sektor eine Kraft im Bereich von 0.5-1.5N vorhanden sein. Beim "EXIT" soll die Kraft 1.5N erreicht haben. Diese Definition erfolgt über Ein- und Austrittslinien des Kraftsektors.




#### **Definition Ein- und Austrittlinien Beispiel:**

- 1) Kraftlinie muss die Sektorfläche durchqueren von links/unten nach rechts/oben.
- 2) Kraftlinie muss die Sektorfläche durchqueren von unten nach oben.
  - 3) Kraftlinie muss die Sektorfläche erreichen und kann dabei die Ein- und Austrittslinien des Kraftsektors mehrfach durchqueren.

1





# Hinweis:

Sind Ein- und Austrittslinien definiert, so muss die Kraftlinie zwingend eine von diesen durchqueren. Sind keine Eintrittslinien definiert so muss die Kraftlinie innerhalb des Sektors beginnen. Sind keine Austrittslinien definiert, so muss die Kraftlinie innerhalb des Sektors enden.



#### 14.6.4 Force Control

## 14.6.4.1 Programm mit Force Control Kommandos

Im WebMotion® Programmenü "program" können mit Hilfe der Befehlssätze die Kraftfunktionen von I\_FORCE CALIBRATION, FORCE LIMITATION und FORCE MONITORING in einem Programm definiert und zusammengefasst werden.

Den Befehlssatz finden sie im Kapitel 11.14.1 Befehlssatz Program



#### 14.6.4.2 Drive Force

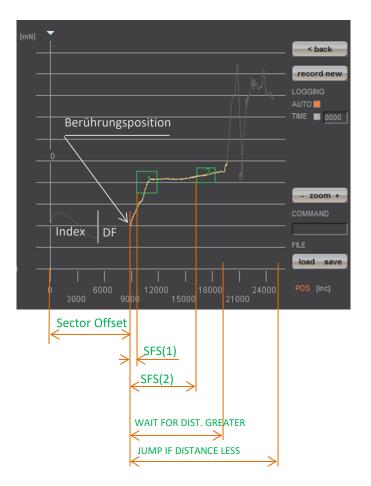
DRIVE FORCE ist eine Fahrt auf Kraft, bestehend aus Beschleunigung (ACC), Geschwindigkeit (SPEED), Kraft (FORCE) und Fahrrichtung (DIRECTION).

Nach Definition der obengenannten Parameter kann ein DRIVE FORCE ebenfalls im Programm eingebunden werden.

Es können bis zu 10 DRIVE FORCE gespeichert werden.



## 14.6.5 Sector Offset für Berührungsposition


Typischerweise wird ein Objekt zuerst berührt. Alle nachfolgenden Funktionen beziehen sich dann immer auf diese Berührungsposition. Je nach der Grössentoleranz der Objekte ist diese Berührungsposition immer unterschiedlich.

Die Berührungsposition kann sehr einfach mit Drive Force (bei kleiner Kraft) "erfasst" werden. Dann wird mit dem Befehl "TPSO" (Take IST-Position as Sector Offset) diese Berührungsposition als Sector Offset für die nachfolgenden Funktionen vorangestellt.

Zum Bestimmen der Werte "Sector Force Start" und "Sector Force End" wird am einfachsten die Kraftkurve aufgezeichnet und dann die Distanz zur Berührungsposition berechnet (Absolutposition – Sector Offset)

"Sector Force Start", "Sector Force End", "Wait for Distance greater/less" und "Jump if Distance greater/less" sind Distanzen relativ zur Berührungsposition (Sector Offset)

Mit "SSO" Set Sector Offset = 0 entsprechen die Distanzen den Absolutpositionen



## 15 Betriebszustand auf 7-Segment Anzeige

| Beschreibung            | Anzeige   |
|-------------------------|-----------|
| Keine Firmware,         | F         |
| Operating System aktiv  |           |
| Firmware aktiv,         | 0         |
| Servocontroller OFF     |           |
| Servo On, Regelkreis    | 1         |
| geschlossen             |           |
| Error (siehe Kapitel 16 | xx blinkt |
| Fehlerbehandlung)       |           |
| Keine Logikspeisung     | keine     |
| oder Spannung           |           |
| Logikspeisung > 27VDC.  |           |





# 16 Fehlerbehandlung

Fehler werden beim XENAX® Servocontroller auf der 7-Segmentanzeige mit einer 2-stelligen Nummer blinkend dargestellt und können mit dem Befehl "TE" Tell Error abgefragt werden.

Es wird zwischen 3 Kategorien unterschieden:

| Informationen | Nr. 0-39  | Verändern den Zustand des Servocontrollers nicht. Sie       |
|---------------|-----------|-------------------------------------------------------------|
|               |           | dienen nur als Statusanzeige                                |
| Warnungen     | Nr. 40-49 | Können allenfalls ein Beenden einer aktiven Fahrt bewirken  |
|               |           | (z.B. Fahren in Softlimite). Ein Weiterfahren ohne Endstufe |
|               |           | ausschalten ist dann aber möglich                           |
| Fehler        | Nr. 50-99 | Führen immer zu einer Ausschaltung der Endstufe und somit   |
|               |           | ist ein Weiterfahren erst wieder nach der Fehlerquittierung |
|               |           | (Power Quit) möglich                                        |
|               |           |                                                             |

Es wird immer die erste Information/Warnung/ Fehler angezeigt, der auftritt. Ein allfälliger Folgefehler wird nicht mehr angezeigt. Jede Warnung kann aber eine Information überschreiben und jeder Fehler kann eine Warnung oder eine Information überschreiben.

Eine Fehlerhistory kann über den ASCII-Befehl "TEB" ausgelesen werden.

#### 16.1 Fehlernummern

| F-Nummer  | Beschreibung                                                        | Hinweis                                                                                                                                                                                                                                                        |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                     | Informationen                                                                                                                                                                                                                                                  |
| 01 bis 12 | Warten auf Input xx (Low od. High)                                  | Fährt weiter, falls Zustand erreicht wird,<br>oder Neustart mit HO, REF, SM, oder PQ, PWC                                                                                                                                                                      |
| 20        | Kommando nicht erlaubt                                              | Kommando nicht erlaubt, wenn übergeordnete Steuerung die Kontrolle über den Servocontroller hat. Die übergeordnete Steuerung kann die Kontrolle über den Servocontroller abgeben, indem in den CANopen Mode 0 gewechselt wird (über das CANopen Objekt 0x6060) |
| 22        | Programm Start unterbrochen                                         | Programm Start wird durch die Input Funktion "INTERRUPT PROGRAM" unterbrochen                                                                                                                                                                                  |
| 23        | Startposition des Fahrprofils ungültig                              | Fahrprofil (ASCII-Befehl "PRF") kann nur gestartet werden, wenn sich der Schlitten aktuell an oder hinter der Startposition des Fahrprofils befindet.                                                                                                          |
| 24        | Ungültige Index-Parameter                                           | Ein oder mehrere Parameter des zuletzt aufgerufenen Index sind ungültig. Acceleration (ASCII-Kommando "AIX"), Speed (ASCII-Kommando "SIX") und Typ (ASCII-Kommando "TYIX") des Index auf gültige Werte prüfen.                                                 |
| 25        | Überwachung Busmodul ausgeschalten                                  | Busmodul ist nur für Entwicklungszwecke gedacht. Busmodul bei Jenny Science austauschen lassen.                                                                                                                                                                |
| 26        | Fremdmotor nicht konfiguriert oder<br>DIP-Switch falsch eingestellt | Bei Jenny Science Motoren (LINAX/ELAX/ROTAX): DIP-Switch muss für alle Jenny Science Motoren auf "LINAX/ELAX/ROTAX" stehen. Bei Motoren anderer Herstellern: Korrekte Einstellungen für den Motor im WebMotion unter setup->motor vornehmen                    |
| 27        | Swing Out Reduction Parameter nicht übernommen                      | Eine neue Umrechnung der Trajektorie für die Swing Out<br>Reduction Funktionalität kann nur nach einem Stillstand der<br>Achse stattfinden -> Achse muss für mindestens 1000ms<br>stillstehen damit die neuen Parameter übernommen werden                      |

| 30       | Limit I Force erreicht                                                                          | Der kraftproportionale Motorstrom hat "Limit I_Force Value" (LIF) erreicht. Motorstrom wird limitiert auf "Limit I_Force Value". Ein möglicher Fehler "50" (Positionsabweichung zu                                                                                                               |
|----------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31       | Limit Force erreicht                                                                            | gross) wird unterdrückt. Die Kraft vom externen Kraftsonsor am Signateq® Messverstärker hat "Limit Force Value" (LF) erreicht. Motorstrom wird limitiert. Ein möglicher Fehler "50"                                                                                                              |
| 32       | I_Force Drift Compensation fehlgeschlagen                                                       | (Positionsabweichung zu gross) wird unterdrückt. Automatische I_Force Drift Compensation Fahrt wurde blockiert oder die Position für die Kompensation konnte nicht für 150ms ruhig gehalten werden (z.B. auf Grund von Vibrationen).                                                             |
| 40       | Fahrwegbegrenzung durch<br>Soft-Limiten                                                         | Warnungen Die Soft-Limiten können in WebMotion® im Menu "move axis / by click" eingestellt werden.                                                                                                                                                                                               |
| 41       | Endschalter positiv/negativ aktiv                                                               | Endschalter werden als Input Funktion "LIMIT SWITCH NEGATIVE" / "LIMIT SWITCH POSITIVE" definiert                                                                                                                                                                                                |
| 42       | Remote Kontroller Kommando<br>zurückgewiesen                                                    | Eine der Slave Achsen meldet einen Fehler oder der Befehl konnte bei<br>einem Slave nicht ausgeführt werden                                                                                                                                                                                      |
| 43       | Remote Kontroller nicht erkannt                                                                 | Master Slave Konfiguration: Es konnten nicht alle im Master definierten remote Controller erkannt werden. Die Programme im Master sind auf nicht vorhandene remote Controller (Rem ID) zu prüfen und diese aus den Programmen zu löschen.                                                        |
| 44<br>45 | Remote Kontroller Kommunikationsfehler<br>AD Offset Fehler                                      | Master/Slave Verkabelung prüfen Der AD-Offset für die Strommessung konnte vor der ersten Fahrt nicht korrekt ermittelt werden. Der Motor muss mit ausgeschalteter Endstufe mindestens einmal für ca. 0.5s stillstehen, damit der AD-                                                             |
| 46       | Zyklische Daten sind nicht korrekt                                                              | Offset korrekt ermittelt werden kann. Zyklische Daten vorgegeben über das Busmodule sind nicht gültig. Daten S-Curve, Deviation Position, Deviation Target Position, I Force Max, Speed und Acceleration überprüfen. Oder PDO Zykluszeit ist nicht korrekt (nur vielfache von 100us sind gültig) |
| 47       | Fahrt durch SMU abgebrochen                                                                     | Eine laufende Fahrt wurde durch das Auslösen der Safety Funktion SS2 oder SLS unterbrochen.                                                                                                                                                                                                      |
| 50       | Positionsabweichung zu gross,<br>Schleppfehler                                                  | Fehler Die Differenz zwischen der intern berechneten Position und der momentanen Motorposition (Encoder) ist grösser als der mit DP (Deviation Position) eingegebene Wert im Setup. Siehe Kapitel 16.2 Bemerkungen zu Fehler 50                                                                  |
| 54       | Übermässiger Anstieg der Temperatur des<br>Motors <b>oder</b> LINAX® Lesekopf Signal<br>schwach | Temperaturanstieg zu hoch/schnell oder das Signal im Lesekopf des Messsystems ist zu schwach. Glasmassstab auf LINAX® Linearmotor reinigen.                                                                                                                                                      |
| 55       | Übermässiger Anstieg der Temperatur des<br>Motors                                               | Temperaturanstieg zu hoch/schnell. Trajektorien fahrt überprüfen.                                                                                                                                                                                                                                |
| 58       | Kommunikationsunterbruch Signateq®                                                              | Es ist kein Signateq® Messverstärker angeschlossen und es wird eine<br>Kraftlimitierte (Limit_Force) Fahrt gestartet oder es besteht ein<br>Verbindungsunderbruch zum Signateq® Messverstärker.                                                                                                  |
| 59       | Angeschlossener JSC-Motor passt nicht zu<br>Applikationsdaten                                   | Der angeschlossene JSC Motor stimmt nicht mit dem in der Applikation gespeicherten Motor überein. (z.B. ein neuer Motortyp wurde                                                                                                                                                                 |
| 60       | Übertemperatur Endstufe                                                                         | angeschlossen). Motortyp Reset (RESM) ausführen.<br>Über 80°C gemessen durch Temperatursensor in der Endstufe. Die<br>Endstufe wird abgeschaltet                                                                                                                                                 |
| 61       | Überspannung Powerspeisung                                                                      | Zu hohe Einspeisespannung oder zu hohe Rückspeisungsenergie auf PW. Fehler tritt nur bei ausgeschalteter Endstufe auf. Bei                                                                                                                                                                       |
| 62       | Ballastschaltung zu lange aktiv                                                                 | eingeschalteter Endstufe siehe Fehler 62.<br>Die Ballasteschaltung ist mehr als 5 Sekunden andauernd aktiv. Zu<br>hohe Rückspeisungsenergie vom Servomotor oder zu hohe                                                                                                                          |
| 63       | Übertemperatur LINAX® / ELAX® / ROTAX®                                                          | Einspeisespannung.<br>Über 80° Spulentemperatur im LINAX® / ELAX® Linearmotor oder<br>ROTAX® rotative Achse. Die Endstufe wird abgeschaltet                                                                                                                                                      |

| 64 | Unterspannung Powerspeisung                        | Die Powerspeisung hat die Mindestspannung unterschritten. Das Netzteil kann eventuell kurzzeitige Spitzenstrom-belastungen nicht liefern                                                                                                                                                                                             |
|----|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 65 | Drehfeldausrichtung auf Magnetpole                 | Die Drehfeldausrichtung auf die Magnetpole war nicht möglich,<br>Schlitten von LINAX®/ELAX® resp. Rotor vom Motor blockiert oder<br>Kabelbruch der Encoder- oder Motorleitung. Falls bei<br>Mehrachssystemen alle mit Fehler 65 kommen, dann ist an einer Achse<br>der D-Sub Stecker des Encoders ausgesteckt. Den Wert Payload (ML) |
| 66 | REF fehlgeschlagen                                 | überprüfen.  Schlitten manuell in "freien Bereich" verschieben und nochmals REF starten. Wert I stop (IS) und I run (IR) überprüfen → Evtl. müssen diese erhöht werden.                                                                                                                                                              |
| 67 | Distanzfehler Z-Marke                              | Die gemessene Distanz der abstandscodierten Referenzmarken ist<br>nicht plausibel. Den Wert Payload (ML) überprüfen. REF nochmals<br>ausführen                                                                                                                                                                                       |
| 68 | Geschwindigkeit zu hoch                            | REF nochmals ausführen. Evtl. Folge einer vorgängig schlechten                                                                                                                                                                                                                                                                       |
| 00 | während REF                                        | Drehfeldausrichtung. Wert I stop (IS) und I run (IR) überprüfen → Evtl. müssen diese erhöht werden.                                                                                                                                                                                                                                  |
| 69 | Fehler HALL Signale                                | Es wurde ein Fehler in der Abfolge der HALL-Signale festgestellt.<br>Encoder-Leitung prüfen                                                                                                                                                                                                                                          |
| 70 | Überstrom Zuleitung Endstufe                       | Evtl. Kurzschluss oder Masseschluss in der Motorleitungen/Wicklung.                                                                                                                                                                                                                                                                  |
| 71 | Endstufe gesperrt                                  | Freigabe an PLC I/O Pin 9 nicht vorhanden (wenn aktiviert) oder die Endstufe wird durch die Safe Motion Unit (SMU) gesperrt                                                                                                                                                                                                          |
| 72 | Geschwindigkeit ist zu hoch                        | Maximale Geschwindigkeit. Bei 100nm Messsystem = 9'000'000 inc/s = 0.9m/s                                                                                                                                                                                                                                                            |
| 73 | Übertemperatur (I <sup>2</sup> T)                  | I <sup>2</sup> t Rechnung hat in der Spule Übertemperatur errechnet.                                                                                                                                                                                                                                                                 |
| 74 | Elektrischer Winkelfehler                          | Der gerechnete elektrische Winkel unterscheidet sich mehr als 50° von                                                                                                                                                                                                                                                                |
|    |                                                    | dem geschätzten Winkel. Stromzufuhr unterbrechen und REF                                                                                                                                                                                                                                                                             |
|    |                                                    | neustarten. Allenfalls Messsystem reinigen. Wert I stop (IS) und I run                                                                                                                                                                                                                                                               |
|    |                                                    | (IR) überprüfen → Evtl. müssen diese erhöht werden.                                                                                                                                                                                                                                                                                  |
| 75 | Referenz pendent                                   | REF muss ausgeführt werden, bevor Motor verfahren kann                                                                                                                                                                                                                                                                               |
| 76 | Gantry Master Slave Offset                         | Unterschied zwischen automatisch gemessenem Gantry Master Slave                                                                                                                                                                                                                                                                      |
|    |                                                    | Offset zur Vorgabe durch Befehl <b>PGMSO</b> grösser als 0.5mm                                                                                                                                                                                                                                                                       |
| 77 | Kommunikationsfehler Busmodul /Serial              | Je nach Betriebsart die Kommunikation zwischen Steuerung und                                                                                                                                                                                                                                                                         |
|    | Port                                               | Busmodul oder die Kommunikation über die serielle Schnittstelle                                                                                                                                                                                                                                                                      |
|    |                                                    | (RS232/Ethernet) überprüfen. Bei Kommunikation über die serielle<br>Schnittstelle gegebenenfalls die Watchdog Zeit anpassen (Befehl                                                                                                                                                                                                  |
|    |                                                    | "WD")                                                                                                                                                                                                                                                                                                                                |
| 78 | Ungültige MAC-Adresse                              | Der XENAX® hat eine ungültige MAC-Adresse bitte kontaktieren Sie die                                                                                                                                                                                                                                                                 |
|    |                                                    | Firma Jenny Science AG                                                                                                                                                                                                                                                                                                               |
| 79 | Checksumme Kalibrationsdaten falsch                | Force Calibration oder Position des mechanischen Anschlages falsch.                                                                                                                                                                                                                                                                  |
|    |                                                    | "Force Calibration" neustarten (ASCII: fcxx) oder "mechanical limit                                                                                                                                                                                                                                                                  |
|    |                                                    | calibration" neustarten (ASCII: mlc).                                                                                                                                                                                                                                                                                                |
| 80 | Überstrom PLC Output                               | Ein oder mehrere Ausgänge der PLC Schnittstelle wurde überlastet. In                                                                                                                                                                                                                                                                 |
|    |                                                    | Source Konfiguration ist Imax <sub>out</sub> =100mA pro Kanal, in Sink                                                                                                                                                                                                                                                               |
|    |                                                    | Konfiguration ist Imax <sub>out</sub> =400mA pro Kanal. Fehler kann auftreten bei<br>induktiver Last ohne Freilaufdiode. In diesem Fall entweder                                                                                                                                                                                     |
|    |                                                    | Freilaufdiode einsetzten oder Sink/Source Konfiguration wählen mit                                                                                                                                                                                                                                                                   |
|    |                                                    | Imax <sub>out</sub> =100mA pro Kanal.                                                                                                                                                                                                                                                                                                |
| 82 | Kommunikationsfehler I <sup>2</sup> C Bus zu Motor | Encoderleitung und Verlängerungen prüfen. Kabelschirmung auf Seite                                                                                                                                                                                                                                                                   |
|    |                                                    | Servocontroller und Motor mit GND verbinden. Master/Slave                                                                                                                                                                                                                                                                            |
|    |                                                    | Verkabelung prüfen.                                                                                                                                                                                                                                                                                                                  |
| 83 | Interner FRAM Fehler                               | Daten können nicht dauerhaft gespeichert werden <sup>1</sup> . Mögliche Ursache                                                                                                                                                                                                                                                      |
|    |                                                    | wie bei Anzeige "L".                                                                                                                                                                                                                                                                                                                 |
| 84 | Start-up Key Fehler                                | Evtl. mit einem anderen Start-up Key testen. Funktionalität im Master-                                                                                                                                                                                                                                                               |
|    |                                                    | Slave Betrieb nicht möglich.                                                                                                                                                                                                                                                                                                         |
| 85 | I <sup>2</sup> C-Switch Fehler                     | Ohne Master-Slave Verkabelung testen.                                                                                                                                                                                                                                                                                                |
| 86 | Checksumme Applikationsdaten falsch                | Kann nach Firmware Download auftreten. Reset (RES) ausführen.                                                                                                                                                                                                                                                                        |
| 87 | Remote Controller nicht erkannt                    | Master Slave Konfiguration: Es konnten nicht alle im Master                                                                                                                                                                                                                                                                          |
|    |                                                    | definierten remote Controller erkannt werden. Die Programme im                                                                                                                                                                                                                                                                       |
|    |                                                    | Master sind auf nicht vorhandene remote Controller (Rem ID) zu                                                                                                                                                                                                                                                                       |
|    |                                                    | prüfen und diese aus den Programmen zu löschen.                                                                                                                                                                                                                                                                                      |



| 88         | Allgemeiner I <sup>2</sup> C Fehler     | Kabel zum Motor oder Master-Slave Kabel überprüfen.                                                                                          |
|------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 89         | SMU Fehler                              | Kommunikationsfehler mit Save Motion Unit. Detailinformationen zur Ursache und Behebung wird von WebMotion® bei Fehlereintritt               |
| 90         | Functional Safety aktiv                 | angezeigt. Siehe Kapitel 16.3 Bemerkungen zu Fehler 89<br>Bei aktivierter Safety Funktion hat die Überwachung angesprochen und               |
|            |                                         | die Endstufe wurde ausgeschaltet.<br>Bei SS2 oder SLS ev. ED (Emergency Deceleration) zu klein gewählt für                                   |
|            |                                         | entsprechendes Stop Timeout.                                                                                                                 |
| 91         | SMU Fehler                              | Fehler der Savety Motion Unit oder Bewegung blockiert aufgrund unkonfigurierter SMU. Detailinformationen zur Ursache und Behebung            |
|            |                                         | wird von WebMotion® bei Fehlereintritt angezeigt.                                                                                            |
|            |                                         | Siehe Kapitel 16.4 Bemerkungen zu Fehler 91                                                                                                  |
| 92         | 3-Phasen Ausgangsfrequenz > 599Hz       | Die 3-Phasen Motor Ausgangsfrequenz hat 599Hz überschritten. Es dürfen nur Bewegungen vorgegeben werden, welche nicht zu einer 3-            |
|            |                                         | Phasen Motor Ausgangsfrequenz von >599Hz führen.                                                                                             |
| 93         | Encoder Plausibilität                   | Die Encoder Signale sind nicht plausibel. Evtl. Unterbruch einzelner                                                                         |
|            |                                         | Litzen im Encoder Kabel oder Encoder Signale sind nur asymmetrisch                                                                           |
|            |                                         | geführt. Bei bewusst asymmetrisch geführten Encoder Signalen von                                                                             |
|            |                                         | rotativen Motoren kann die Encoder Plausibilitätsprüfung                                                                                     |
|            |                                         | ausgeschalten werden (siehe ASCII-Befehl ENCPD).                                                                                             |
| 94 ("EE")  | Neustart aufgrund eines Ausnahmefehlers | XENAX® startete neu aufgrund eines Software-Ausnahmefehlers ("EE" wird am Display angezeigt). Mit Jenny Science Kontakt aufnehmen.           |
| 96         | Firmware Checksum Fehler                | Bitte laden Sie die XENAX® Firmware erneut. Wenn sich Fehlermeldung                                                                          |
| 07         | Vouseles eleteltes Women es e           | wiederholt, kontaktieren Sie bitte Jenny Science.                                                                                            |
| 97         | Verschachtelte Warnungen                | Es trat bereits eine neue Warnung auf, bevor der Zustand der zur alten Warnung geführt hat bereinigt wurde. Prozessablauf so gestalten, dass |
|            |                                         | nicht zwei Warnungen verschachtelt auftreten können (z.B. Fahren in                                                                          |
|            |                                         | Softlimite und dann Fahren in Limit Switch, bevor die Softlimite wieder                                                                      |
|            |                                         | verlassen wurde).                                                                                                                            |
| 98         | AD Interrupt Verschachtelung            | Bitten starten Sie den XENAX® Servocontroller neu                                                                                            |
| 99         | Encoder Kabel ausgesteckt               | Motor Encoder Kabel wurde ausgesteckt. Encoder Kabel wieder<br>anschliessen und XENAX neu starten.                                           |
| "L"        | Level I <sup>2</sup> C Bus              | Die Pegel (Level) des I <sup>2</sup> C Bus nicht i.O. Bus blockiert. Rotativer Motor                                                         |
| <i>"</i> - |                                         | angeschlossen auf Linear eingestelltem XENAX® Servocontroller (DIP-                                                                          |
|            |                                         | Schalter)? Oder evtl. Encoder Anschlusskabel defekt. Für den Encoder-                                                                        |
|            |                                         | Test stecken Sie den Encoderstecker aus, dann sollte der XENAX®                                                                              |
|            |                                         |                                                                                                                                              |
| ,,         |                                         | normal starten. Falls nicht bitte Support Jenny Science kontaktieren.                                                                        |
| "n"        | Level I <sup>2</sup> C Bus              | normal starten. Falls nicht bitte Support Jenny Science kontaktieren. I <sup>2</sup> C Bus antwortet mit "nak" (not acknowledged)            |
| "n"        | Level I <sup>2</sup> C Bus              | normal starten. Falls nicht bitte Support Jenny Science kontaktieren.                                                                        |

<sup>&</sup>lt;sup>1</sup>) Interner Gerätefehler, Kontaktaufnahme mit Jenny Science notwendig



## 16.2 Bemerkungen zu Fehler 50

Fehler 50 bedeutet Abweichung Positionssollwert zu Positionsistwert grösser als "DEVIATION POS ACT" (WebMotion®, setup, state controller). Es kann verschiedene Ursachen haben die zu diesem Fehler führen. Sie können folgende Punkte testen:



Test POSITION Encoder Zähler

Statusanzeige XENAX® WebMotion®

Beim verschieben des Schlittens einer Linearmotor-Achse oder bei drehen eines Servomotors von Hand muss der Positionszähler mitlaufen. Sonst Kabel prüfen, Signale Encoder (A/A\* und B/B\* prüfen).



Rotative Motoren Drehen Sie die Motorwelle im Uhrzeigersinn (Blick von vorne auf die Welle), die Positionsanzeige muss positiv zählen. Drehen Sie die Motorwelle im Gegenuhrzeigersinn, der Zähler muss negativ zählen. Vergleichen Sie Kapitel 6.2.5 Definition der Drehrichtung bei Servomotoren.

Test der Parameter im Setup

I STOP genügend?
I RUN genügend?
DEVIATION POS 2000 (Default)
DEVIATION TARGET POS 50 (Default)

Test des Speisegerätes

Ist genug Spannung und genügend Strom verfügbar?

Bei LINAX® für die Drehfeldausrichtung Lxc F04 min 5,2A Lxc F08 min 6,1A Lx F10 min 5,5A Lx F40 min 6.0A Lx F60 min. 8.0A

Bei ELAX® für die Drehfeldausrichtung Ex F20 min 5,5A



Beim Betrieb von LINAX® Linearmotor-Achsen und ELAX® elektrischen Schlitten empfehlen wir die Quick Start Funktion mit automatischem Systemcheck durchzuführen.

Test bei brushless Servomotoren der Hall Signale Encoder A/B und Motorphasen (Kabel u. Farben)

Es besteht keine einheitliche Normierung der Servomotor-anschlüsse. Jenny Science bietet Unterstützung bei der Inbetriebnahme.

Test ob der Motor bei langsamer Geschwindigkeit läuft

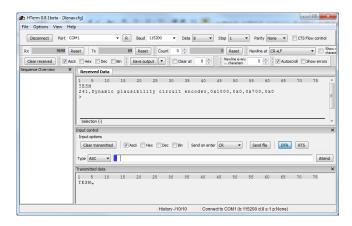
#### Mit WebMotion®

Menu Motion: S-CURVE 20% AC (x1'000) 100 SPEED 10'000 Power Rep Reverse 10'000

#### **Menu Terminal:**

SCRV20 AC100000E SP10000 WA10000 PWC RR100

## 16.3 Bemerkungen zu Fehler 89


Der Fehler 89 zeigt einen kritischen SMU-Fehler an, welcher nicht über ein Kommando quittiert werden kann. Die Fehlerursache muss zuerst behoben werden und danach muss der XENAX neu gestartet werden, damit der Fehler quittiert wird. Die genaue Fehlerursache wird im WebMotion angezeigt. Kann die Fehlerursache nicht behoben werden bzw. tritt der Fehler wiederholt auf, ist Kontaktaufnahme mit Jenny Science notwendig.

Durch klicken auf den Button "ERROR 89", wird die genauere Fehlerbeschreibung angezeigt.



Genauere Fehlerbeschreib ohne WebMotion

Über ein Terminalprogramm das Kommando "TESM" eingeben.

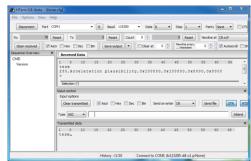


| F-Number | Fehlerbeschreib                                    | Hinweis                                                                                                                                          |
|----------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 210      | host communication, external supervising, watchdog | Kommunikation SMU zu XENAX unterbrochen. Ev. schlechte Schirmung des Encoderkabels.                                                              |
| 220      | data consistency/checksum<br>master/slave          | Parameter nicht korrekt geladen. Erneuter Download der SMU Parameter.                                                                            |
| 232      | firmware version not compatible                    | Firmware nicht korrekt geladen. Erneuter Download der SMU Firmware.                                                                              |
| 241      | dynamic plausibility circuit encoder               | Selbsttest der Encodersignal Auswertung beim Powerup fehlgeschlagen. Evtl. Encoderkabel nicht eingesteckt am XENAX®.                             |
| 243      | plausibility digital signal                        | Ungültiger Zustand eines bzw. mehrerer Encodersignale im Betrieb. Encoderkabel prüfen, evtl. Kabelbruch.                                         |
| 244      | plausibility analogue signal                       | Ungültige Spannungsdifferenz eines bzw. mehrerer<br>Encodersignale im Betrieb. Encoderkabel prüfen, evtl.<br>Kabelbruch.                         |
| 245      | encoder cable disconnected                         | Encoderkabel nicht eingesteckt am XENAX®.                                                                                                        |
| 246      | faulty input states                                | Von den Safety Inputs ist nur ein Eingang aktiviert, es<br>müssen immer zwei Eingänge aktiv sein. Ev. Kabelbruch bei<br>den Safety Input Kabeln. |
| 247      | power active input test                            | Pin 9 im XENAX® aktiviert, dieser Eingang darf mit der SMU nicht benutzt werden.                                                                 |
| 252      | motor data failure                                 | Motordaten wurden nicht an die SMU übertragen. Ev. schlechte Schirmung des Encoderkabels.                                                        |

Alle anderen Fehlernummern sind interne Gerätefehler. Bei mehrmaligem Erscheinen Kontaktaufnahme mit Jenny Science notwendig.



# 16.4 Bemerkungen zu Fehler 91


Der Fehler 91 zeigt einen unkritischen SMU-Fehler an. Die Fehlerursache muss aber behoben werden und danach kann der Fehler normal quittiert werden. Die genauere Fehlerursache wird im WebMotion angezeigt.

Durch klicken auf den Button "ERROR 91", wird die genauere Fehlerbeschreibung angezeigt.



Genauerer Fehlerbeschreib ohne WebMotion:

Über ein Terminalprogramm das Kommando "TESM" eingeben.



| F-Nummer | Beschreibung                        | Hinweis                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | Motion blocked by unconfigured SMU  | Keine Safety Funktion konfiguriert, Bewegung blockiert. Sobald eine Safety Funktion konfiguriert ist (siehe Kapitel 4.6 Functional Safety Parametrierung in WebMotion®) ist die Blockade permanent aufgehoben. Die Blockade kann auch temporär, bis zum nächsten Power cycle, mit dem Befehl "DMBUS" aufgehoben werden. CANopen direct command Objekt 0x5000, Wert 0x5030                            |
| 230      | acceleration plausibility           | Zu hohe Beschleunigung detektiert. Ev. Fahrt in einen harten mechanischen Anschlag erfolgt.                                                                                                                                                                                                                                                                                                          |
| 248      | scale failure                       | Für Jenny Science Motoren (LINAX/ELAX/ROTAX): Temperaturanstieg im Motor zu schnell oder Messkopfsignal zu schwach. Fahrprofil prüfen oder bei LINAX mit Glassmassstab den Glassmassstab reinigen. Für Motoren anderer Herstellern: Ev. DIP-Switch falsch eingestellt. DIP-Switch muss auf "Kein JSC Motor" stehen (siehe Kapitel 7 Konfiguration Motor-Typ Jenny Science / Motor kundenspezifisch). |
| 249      | overcurrent failure                 | Evtl. Kurzschluss oder Masseschluss in der<br>Motorleitungen/Wicklung.                                                                                                                                                                                                                                                                                                                               |
| 250      | overtemperature 3 phase power stage | Über 80°C gemessen durch Temperatursensor in der Endstufe.                                                                                                                                                                                                                                                                                                                                           |



## 16.5 Willkürliche Anzeige auf 7-Segment

Nachdem die Logikspannung (24V) eingeschaltet wird,

erscheint typischerweise eine "0" auf der Anzeige. Bei angeschlossener, aktiver Ethernet Verbindung leuchtet noch die grüne LED des RJ 45 Steckers



Erscheint ein willkürliches Zeichen z.B. "8." oder flackert die Anzeige, dann sind folgende Ursachen möglich.



#### 16.5.1 Netzteil für Logikspeisung fehlerhaft

Für die Logikspeisung sollte das Netzteil 24V DC und mind. 300mA liefern. Speist dasselbe Netzteil Logik und auch Power mit 24V DC, dann sind 5A notwendig.

Spannung messen (24VDC), Netzteil bei Bedarf austauschen.

Wurde z.B. eine falsche oder korrupte Firmware-Datei geladen oder eine andere Ursache: XENAX® mit DIP-Schalter Firmware Speicher löschen und Bootloader starten:

DIP-Schalter 1 auf ON
Logikspeisung ON, Firmware Speicher wird gelöscht,
warten bis Anzeige "F"
Logikspeisung OFF
DIP-Schalter 1 auf OFF
Logikspeisung auf ON, Anzeige "F" → Bootloader
aktiv,

Ethernet Verbindung zu PC/Laptop und mit WebMotion® neue Firmware laden

DIP-Schalter 1

OFF
ON

## Hinweise

Diese Anleitung enthält urheberrechtlich geschützte Eigeninformation. Alle Rechte sind vorbehalten. Dieses Dokument darf ohne vorherige Zustimmung von Jenny Science AG weder vollständig noch in Auszügen fotokopiert, vervielfältigt oder übersetzt werden.

Die Firma Jenny Science AG übernimmt weder Garantie noch irgendeine Haftung für Folgen, die auf fehlerhafte Angaben zurückgehen.

Änderungen dieser Anleitung sind vorbehalten.

Jenny Science AG Sandblatte 7a CH-6026 Rain, Schweiz

Tel +41 (0) 41 455 44 55 Fax +41 (0) 41 455 44 50

> www.jennyscience.ch info@jennyscience.ch

© Copyright Jenny Science AG 2021